Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BEERS R. F., Jr, SIZER I. W. Progressive inhibition of the catalase-hydrogen peroxide system by acetate, chloride and azide. Arch Biochem Biophys. 1956 Jan;60(1):115–125. doi: 10.1016/0003-9861(56)90403-9. [DOI] [PubMed] [Google Scholar]
- BEERS R. F., Jr, SIZER I. W. Sulfide inhibition of catalase. Science. 1954 Jul 2;120(3105):32–33. doi: 10.1126/science.120.3105.32. [DOI] [PubMed] [Google Scholar]
- CHANCE B. Effect of pH upon the reaction kinetics of the enzyme-substrate compounds of catalase. J Biol Chem. 1952 Feb;194(2):471–481. [PubMed] [Google Scholar]
- CHANCE B. Peroxidase heme linkages. Arch Biochem Biophys. 1952 Sep;40(1):153–164. doi: 10.1016/0003-9861(52)90083-0. [DOI] [PubMed] [Google Scholar]
- CHANCE B. The effect of pH upon the equilibria of catalase compounds. J Biol Chem. 1952 Feb;194(2):483–496. [PubMed] [Google Scholar]
- CHANCE B. The reactions of catalase in the presence of the notatin system. Biochem J. 1950 Apr;46(4):387–402. doi: 10.1042/bj0460387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DOUCE A. L., SCHWALENBERG R. R. Further investigation of the reducibility of lyophilized catalase. Science. 1950 Jun 16;111(2894):654–654. doi: 10.1126/science.111.2894.654. [DOI] [PubMed] [Google Scholar]
- GEORGE P. Redox reactions of catalase intermediate compounds and a new peroxidatic role for catalase. Biochem J. 1952 Dec;52(4):xix–xix. [PubMed] [Google Scholar]
- GEORGE P. The chemical nature of the second hydrogen peroxide compound formed by cytochrome c peroxidase and horseradish peroxidase. 2. Formation and decomposition. Biochem J. 1953 Sep;55(2):220–230. doi: 10.1042/bj0550220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GEORGE P. The chemical nature of the second hydrogen peroxide compound formed by cytochrome c peroxidase and horseradish peroxidase. I. Titration with reducing agents. Biochem J. 1953 May;54(2):267–276. doi: 10.1042/bj0540267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herbert D., Pinsent J. Crystalline bacterial catalase. Biochem J. 1948;43(2):193–202. doi: 10.1042/bj0430193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEILIN D., HARTREE E. F. Catalase, peroxidase and metmyoglobin as catalysts of coupled peroxidatic reactions. Biochem J. 1955 Jun;60(2):310–325. doi: 10.1042/bj0600310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEILIN D., HARTREE E. F. Reactions of methaemoglobin and catalase with peroxides and hydrogen donors. Nature. 1954 Apr 17;173(4407):720–723. doi: 10.1038/173720a0. [DOI] [PubMed] [Google Scholar]
- KEILIN D., NICHOLLS P. Reactions of catalase with hydrogen peroxide and hydrogen donors. Biochim Biophys Acta. 1958 Aug;29(2):302–307. doi: 10.1016/0006-3002(58)90189-6. [DOI] [PubMed] [Google Scholar]
- Keilin D., Hartree E. F. Properties of azide-catalase. Biochem J. 1945;39(2):148–157. doi: 10.1042/bj0390148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keilin D., Hartree E. F. Properties of glucose oxidase (notatin): Addendum. Sedimentation and diffusion of glucose oxidase (notatin). Biochem J. 1948;42(2):221–229. [PMC free article] [PubMed] [Google Scholar]
- LASER H. The effect of low oxygen tension on the activity of aerobic dehydrogenases. Proc R Soc Lond B Biol Sci. 1952 Oct 16;140(899):230–243. doi: 10.1098/rspb.1952.0060. [DOI] [PubMed] [Google Scholar]
- NICHOLLS P. The formation and properties of sulphmyoglobin and sulphcatalase. Biochem J. 1961 Nov;81:374–383. doi: 10.1042/bj0810374. [DOI] [PMC free article] [PubMed] [Google Scholar]
