Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMOORE J. E., PARSONS D. S., WERKHEISER W. C. A lithium internal-standard flame photometer. Biochem J. 1958 Jun;69(2):236–238. doi: 10.1042/bj0690236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CALDWELL P. C., HODGKIN A. L., KEYNES R. D., SHAW T. L. The effects of injecting 'energy-rich' phosphate compounds on the active transport of ions in the giant axons of Loligo. J Physiol. 1960 Jul;152:561–590. doi: 10.1113/jphysiol.1960.sp006509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955 Nov;217(1):383–393. [PubMed] [Google Scholar]
- DUNHAM E. T., GLYNN I. M. Adenosinetriphosphatase activity and the active movements of alkali metal ions. J Physiol. 1961 Apr;156:274–293. doi: 10.1113/jphysiol.1961.sp006675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GARDOS G. Akkumulation der Kaliumionen durch menschliche Blutkörperchen. Acta Physiol Acad Sci Hung. 1954;6(2-3):191–199. [PubMed] [Google Scholar]
- GLYNN I. M. Sodium and potassium movements in human red cells. J Physiol. 1956 Nov 28;134(2):278–310. doi: 10.1113/jphysiol.1956.sp005643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARRIS E. J., MAIZELS M. The permeability of human erythrocytes to sodium. J Physiol. 1951 May;113(4):506–524. doi: 10.1113/jphysiol.1951.sp004591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L. Ionic movements and electrical activity in giant nerve fibres. Proc R Soc Lond B Biol Sci. 1958 Jan 1;148(930):1–37. doi: 10.1098/rspb.1958.0001. [DOI] [PubMed] [Google Scholar]
- JARNEFELT J. Sodium-stimulated adenosinetriphosphatase in microsomes from rat brain. Biochim Biophys Acta. 1961 Mar 18;48:104–110. doi: 10.1016/0006-3002(61)90520-0. [DOI] [PubMed] [Google Scholar]
- KAHN J. B., Jr, ACHESON G. H. Effects of cardiac glyosides and other lactones, and of certain other compounds, on cation transfer in human erythrocytes. J Pharmacol Exp Ther. 1955 Nov;115(3):305–318. [PubMed] [Google Scholar]
- KEYNES R. D., SWAN R. C. The effect of external sodium concentration on the sodium fluxes in frog skeletal muscle. J Physiol. 1959 Oct;147:591–625. doi: 10.1113/jphysiol.1959.sp006264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEYNES R. D. The ionic fluxes in frog muscle. Proc R Soc Lond B Biol Sci. 1954 May 27;142(908):359–382. doi: 10.1098/rspb.1954.0030. [DOI] [PubMed] [Google Scholar]
- KREBS H. A., EGGLESTON L. V., TERNER C. In vitro measurements of the turnover rate of potassium in brain and retina. Biochem J. 1951 May;48(5):530–537. doi: 10.1042/bj0480530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KREBS H. A., KORNBERG H. L., BURTON K. A survey of the energy transformations in living matter. Ergeb Physiol. 1957;49:212–298. [PubMed] [Google Scholar]
- MAIZELS M., REMINGTON M., TRUSCOE R. Metabolism and sodium transfer of mouse ascites tumour cells. J Physiol. 1958 Jan 23;140(1):80–93. doi: 10.1113/jphysiol.1958.sp005917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- POST R. L., MERRITT C. R., KINSOLVING C. R., ALBRIGHT C. D. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem. 1960 Jun;235:1796–1802. [PubMed] [Google Scholar]
- SCHATZMANN H. J. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1953;11(4):346–354. [PubMed] [Google Scholar]
- SKOU J. C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta. 1957 Feb;23(2):394–401. doi: 10.1016/0006-3002(57)90343-8. [DOI] [PubMed] [Google Scholar]
- Stern J. R., Eggleston L. V., Hems R., Krebs H. A. Accumulation of glutamic acid in isolated brain tissue. Biochem J. 1949;44(4):410–418. [PMC free article] [PubMed] [Google Scholar]
- TERNER C., EGGLESTON L. V., KREBS H. A. The role of glutamic acid in the transport of potassium in brain and retina. Biochem J. 1950 Aug;47(2):139–149. doi: 10.1042/bj0470139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHITTAM R., BREUER H. J. Ion transport and metabolism in slices of guinea-pig seminal-vesicle mucosa. Biochem J. 1959 Aug;72:638–646. doi: 10.1042/bj0720638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHITTAM R., DAVIES R. E. Active transport of water, sodium, potassium and alpha-oxoglutarate by kidney-cortex slices. Biochem J. 1953 Dec;55(5):880–888. doi: 10.1042/bj0550880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHITTAM R. Potassium movements and ATP in human red cells. J Physiol. 1958 Mar 11;140(3):479–497. [PMC free article] [PubMed] [Google Scholar]
- WHITTAM R. Sodium and potassium movements in kidney cortex slices from new-born animals. J Physiol. 1960 Sep;153:358–369. doi: 10.1113/jphysiol.1960.sp006539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHITTAM R., WHEELER K. P. The sensitivity of a kidney ATPase to ouabain and to sodium and potassium. Biochim Biophys Acta. 1961 Aug 19;51:622–624. doi: 10.1016/0006-3002(61)90633-3. [DOI] [PubMed] [Google Scholar]
