Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1962 Sep;84(3):501–506. doi: 10.1042/bj0840501

The accumulation of salicylic acid by mycobacteria during growth on an iron-deficient medium

C Ratledge 1,2, F G Winder 1,2
PMCID: PMC1243704  PMID: 14490535

Full text

PDF
501

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AEBI A., ASSELINEAU J., LEDERER E. Sur les lipides de la souche humaine Brevannes. de Mycobacterium tuberculosis. Bull Soc Chim Biol (Paris) 1953;35(7):661–684. [PubMed] [Google Scholar]
  2. BHAT M. G., RAMAKRISHNAN T., BHAT J. V. Salicylate as intermediate in the breakdown of aromatic ring by Pseudomonas convexa var. hippuricum. Can J Microbiol. 1959 Feb;5(1):109–118. doi: 10.1139/m59-013. [DOI] [PubMed] [Google Scholar]
  3. DAGLEY S., EVANS W. C., RIBBONS D. W. New pathways in the oxidative metabolism of aromatic compounds by microorganisms. Nature. 1960 Nov 12;188:560–566. doi: 10.1038/188560a0. [DOI] [PubMed] [Google Scholar]
  4. FARMER V. C., HENDERSON M. E., RUSSELL J. D. Reduction of certain aromatic acids to aldehydes and alcohols by Polystictus versicolor. Biochim Biophys Acta. 1959 Sep;35:202–211. doi: 10.1016/0006-3002(59)90349-x. [DOI] [PubMed] [Google Scholar]
  5. Fitzgerald R. J., Bernheim F. The Effect of Streptomycin on the Metabolism of Benzoic Acid by Certain Mycobacteria. J Bacteriol. 1947 Dec;54(6):671–679. doi: 10.1128/jb.54.6.671-679.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gale G. R. THE OXIDATION OF BENZOIC ACID BY MYCOBACTERIA I. : Metabolic Pathways in Mycobacterium tuberculosis, Mycobacterium butyricum, and Mycobacterium phlei. J Bacteriol. 1952 Feb;63(2):273–278. doi: 10.1128/jb.63.2.273-278.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HAYAISHI O., KATAGIRI M., ROTHBERG S. Studies on oxygenases; pyrocatechase. J Biol Chem. 1957 Dec;229(2):905–920. [PubMed] [Google Scholar]
  8. HENDERSON M. E. The influence of trace elements on the metabolism of aromatic compounds by soil fungi. J Gen Microbiol. 1960 Oct;23:307–313. doi: 10.1099/00221287-23-2-307. [DOI] [PubMed] [Google Scholar]
  9. HENDERSON M. E. The metabolism of aromatic compounds related to lignin by some hyphomycetes and yeast-like fungi of soil. J Gen Microbiol. 1961 Sep;26:155–165. doi: 10.1099/00221287-26-1-155. [DOI] [PubMed] [Google Scholar]
  10. SISTROM W. R., STANIER R. Y. The mechanism of catechol oxidation by Mycobacterium butyricum. J Bacteriol. 1953 Oct;66(4):404–406. doi: 10.1128/jb.66.4.404-406.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. SLOANE N. H., SAMUELS M., MAYER R. L. Factors affecting the hydroxylation of aniline by Mycobacterium smegmatis. J Biol Chem. 1954 Feb;206(2):751–755. [PubMed] [Google Scholar]
  12. SRINIVASAN P. R., WEISS B. The biosynthesis of p-aminobenzoic acid: studies on the origin of the amino group. Biochim Biophys Acta. 1961 Aug 19;51:597–599. doi: 10.1016/0006-3002(61)90623-0. [DOI] [PubMed] [Google Scholar]
  13. TRECCANI V., WALKER N., WILTSHIRE G. H. The metabolism of naphthalene by soil bacteria. J Gen Microbiol. 1954 Dec;11(3):341–348. doi: 10.1099/00221287-11-3-341. [DOI] [PubMed] [Google Scholar]
  14. WAGNER W. H. Uber den oxydativen Abbau aromatischer Substanzen durch saprophytäre Mycobakterien. Biochem Z. 1951 Oct;322(2):121–130. [PubMed] [Google Scholar]
  15. WALKER N., EVANS W. C. Pathways in the metabolism of the monohydroxybenzoic acids by soil bacteria. Biochem J. 1952 Dec;52(4):xxiii–xxiv. [PubMed] [Google Scholar]
  16. WINDER F. G., O'HARA C. Effects of iron deficiency and of zinc deficiency on the composition of Mycobacterium smegmatis. Biochem J. 1962 Jan;82:98–108. doi: 10.1042/bj0820098. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES