Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1962 Dec;85(3):507–516. doi: 10.1042/bj0850507

A study of the `reactive' sulphydryl groups of adenosine 5′-triphosphate–creatine phosphotransferase

D C Watts 1,*, B R Rabin 1
PMCID: PMC1243773  PMID: 13999246

Full text

PDF
507

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BENESCH R. E., LARDY H. A., BENESCH R. The sulfhydryl groups of crystalline proteins. I. Some albumins, enzymes, and hemoglobins. J Biol Chem. 1955 Oct;216(2):663–676. [PubMed] [Google Scholar]
  2. CHO A. K., HASLETT W. L., JENDEN D. J. A titrimetric method for the determination of creating phosphokinase. Biochem J. 1960 Apr;75:115–119. doi: 10.1042/bj0750115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. COHN M., HUGHES T. R., Jr Nuclear magnetic resonance spectra of adenosine di- and triphosphate. II. Effect of complexing with divalent metal ions. J Biol Chem. 1962 Jan;237:176–181. [PubMed] [Google Scholar]
  4. CROOK E. M., MATHIAS A. P., RABIN B. R. Spectrophotometric assay of bovine pancreatic ribonuclease by the use of cytidine 2':3'-phosphate. Biochem J. 1960 Feb;74:234–238. doi: 10.1042/bj0740234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. ENNOR A. H., MORRISON J. F. Biochemistry of the phosphagens and related guanidines. Physiol Rev. 1958 Oct;38(4):631–674. doi: 10.1152/physrev.1958.38.4.631. [DOI] [PubMed] [Google Scholar]
  6. ENNOR A. H., ROSENBERG H., ARMSTRONG M. D. Specificity of creatine phosphokinase. Nature. 1955 Jan 15;175(4446):120–120. doi: 10.1038/175120a0. [DOI] [PubMed] [Google Scholar]
  7. Ennor A. H., Stocken L. A. The preparation of sodium phosphocreatine. Biochem J. 1948;43(2):190–191. [PMC free article] [PubMed] [Google Scholar]
  8. HAMMOND B. R., GUTFREUND H. The mechanism of ficin-catalysed reactions. Biochem J. 1959 Jun;72(2):349–357. doi: 10.1042/bj0720349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HARRISON W. H., BOYER P. D., FALCONE A. B. The mechanism of enzymic phosphate transfer reactions. J Biol Chem. 1955 Jul;215(1):303–317. [PubMed] [Google Scholar]
  10. KENNEDY E. P., KOSHLAND D. E., Jr Properties of the phosphorylated active site of phosphoglucomutase. J Biol Chem. 1957 Sep;228(1):419–431. [PubMed] [Google Scholar]
  11. KUBY S. A., NODA L., LARDY H. A. Adenosinetriphosphate-creatine transphosphorylase. I. Isolation of the crystalline enzyme from rabbit muscle. J Biol Chem. 1954 Jul;209(1):191–201. [PubMed] [Google Scholar]
  12. KUBY S. A., NODA L., LARDY H. A. Adenosinetriphosphate-creatine transphosphorylase. III. Kinetic studies. J Biol Chem. 1954 Sep;210(1):65–82. [PubMed] [Google Scholar]
  13. LINDLEY H. A study of the kinetics of the reaction between thiol compounds and choloracetamide. Biochem J. 1960 Mar;74:577–584. doi: 10.1042/bj0740577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWENSTEIN J. M. Transphosphorylations catalysed by bivalent metal ions. Biochem J. 1958 Oct;70(2):222–230. doi: 10.1042/bj0700222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. NAJJAR V. A., McCOY E. E. Mechanism of action of muscle and yeast phosphoglucomutase and a suggested mechanism for yeast hexokinase. Fed Proc. 1958 Dec;17(4):1141–1144. [PubMed] [Google Scholar]
  16. NIHEI T., NODA L., MORALES M. F. Kinetic properties and equilibrium constant of the adenosine triphosphate-creatine transphosphorylase-catalyzed reaction. J Biol Chem. 1961 Dec;236:3203–3209. [PubMed] [Google Scholar]
  17. NODA L., KUBY S. A., LARDY H. A. Adenosinetriphosphate-creatine transphosphorylase. II. Homogeneity and physicochemical properties. J Biol Chem. 1954 Jul;209(1):203–210. [PubMed] [Google Scholar]
  18. NODA L., NIHEI T., MORALES M. F. The enzymatic activity and inhibition of adenosine 5'-triphosphate-creatine transphosphorylase. J Biol Chem. 1960 Oct;235:2830–2834. [PubMed] [Google Scholar]
  19. PADIEU P., MOMMAERTS W. F. Creatine phosphoryl transferase and phosphoglyceraldehyde dehydrogenase in iodoacetate poisoned muscle. Biochim Biophys Acta. 1960 Jan 1;37:72–77. doi: 10.1016/0006-3002(60)90080-9. [DOI] [PubMed] [Google Scholar]
  20. RABIN B. R. The nature of metal-peptide complexes in aqueous solution and the relationship these have to proteolytic activity. Biochem Soc Symp. 1958;(15):21–47. [PubMed] [Google Scholar]
  21. RABIN B. R., WATTS D. C. A theory of the mechanism of action of creatine phosphokinase. Nature. 1960 Dec 31;188:1163–1165. doi: 10.1038/1881163a0. [DOI] [PubMed] [Google Scholar]
  22. ROSE I. A. Studies on the enolization of pyruvate by pyruvate kinase. J Biol Chem. 1960 Apr;235:1170–1177. [PubMed] [Google Scholar]
  23. SAMUELS A. J. Immunoenzymological evidence suggesting a change in conformation of adenylic acid deaminase and creatine kinase during substrate combination. Biophys J. 1961 Jul;1:437–444. doi: 10.1016/s0006-3495(61)86901-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SAMUELS A. J., NIHEI T., NODA L. A change in optical rotation of creatine-ATP transphosphorylase during enzyme substrate interaction suggesting an alteration in conformation. Proc Natl Acad Sci U S A. 1961 Dec 15;47:1992–1996. doi: 10.1073/pnas.47.12.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. TANZER M. L., GILVARG C. Creatine and creatine kinase measurement. J Biol Chem. 1959 Dec;234:3201–3204. [PubMed] [Google Scholar]
  26. WATTS D. C., RABIN B. R., CROOK E. M. The reaction of iodoacetate and iodoacetamide with proteins as determined with a silver/silver iodide electrode. Biochim Biophys Acta. 1961 Apr 1;48:380–388. doi: 10.1016/0006-3002(61)90488-7. [DOI] [PubMed] [Google Scholar]
  27. Watts D. C., Rabin B. R., Crook E. M. The number of catalytic sites in creatine phosphokinase as determined by a study of its reactive sulphydryl groups. Biochem J. 1962 Mar;82(3):412–417. doi: 10.1042/bj0820412. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES