Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1981;319:65–79. doi: 10.1113/jphysiol.1981.sp013892

The role of intrarenal pH in regulation of ammoniagenesis: [31P]NMR studies of the isolated perfused rat kidney.

J J Ackerman, M Lowry, G K Radda, B D Ross, G G Wong
PMCID: PMC1243822  PMID: 7320929

Abstract

1. [31P]NMR spectra were obtained from a functioning isolated perfused rat kidney with the aim of determining intrarenal pH in acute acidosis. 2. Signals from intracellular inorganic phosphate could be observed in the absence of phosphate in the perfusion medium. Under these conditions renal ATP and inorganic phosphate content fell by 30% but total adenine nucleotide and phosphorylation potential ATP/ADP x Pi were unchanged compared with kidneys perfused with phosphate-containing medium. In addition, G.F.R., Na+ reabsorption and ammonia formation from glutamine remained normal. Ammonia production increased 93%, urine pH fell to 5.8 +/- 0.1 and kidney 2-oxoglutarate content fell by 80% upon acidification of the perfusion medium from pH 7.4 to pH 6.9, findings identical with those obtained in controls (Ross & Tannen, 1979). 3. [31P]NMR spectra of the isolated perfused rat kidney showed a pattern of adenine nucleotides and a small concentration of phosphocreatine, Intra-renal pH was measured from the resonance position of intracellular inorganic phosphate and in perfusions with pH 7.4 buffer was 7.19 +/- 0.10 (n = 11). 4. Acidification of the perfusion medium to pH 7.0 resulted in 0.3 pH unit fall in intrarenal pH. This fall in total intrarenal pH is insufficient to explain the fall in 2-oxoglutarate concentration observed if the glutamate-dehydrogenase-equilibrium model is invoked. 5. The line-width of the NMR signal is compatible either with heterogeneity of intra-renal pH or the existence of a pH gradient between cytosol and mitochondria, or both.

Full text

PDF
65

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cohen S. M., Ogawa S., Rottenberg H., Glynn P., Yamane T., Brown T. R., Shulman R. G. P nuclear magnetic resonance studies of isolated rat liver cells. Nature. 1978 Jun 15;273(5663):554–556. doi: 10.1038/273554a0. [DOI] [PubMed] [Google Scholar]
  2. Hoult D. I., Busby S. J., Gadian D. G., Radda G. K., Richards R. E., Seeley P. J. Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature. 1974 Nov 22;252(5481):285–287. doi: 10.1038/252285a0. [DOI] [PubMed] [Google Scholar]
  3. Krebs H. A., Vinay P. Regulation of renal ammonia production. Med Clin North Am. 1975 May;59(3):595–603. doi: 10.1016/s0025-7125(16)32011-9. [DOI] [PubMed] [Google Scholar]
  4. Lowry M., Ross B. D. Activation of oxoglutarate dehydrogenase in the kidney in response to acute acidosis. Biochem J. 1980 Sep 15;190(3):771–780. doi: 10.1042/bj1900771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Papa S., Paradies G. On the mechanism of translocation of pyruvate and other monocarboxylic acids in rat-liver mitochondria. Eur J Biochem. 1974 Nov 1;49(1):265–274. doi: 10.1111/j.1432-1033.1974.tb03831.x. [DOI] [PubMed] [Google Scholar]
  6. Radda G. K., Seeley P. J. Recent studies on cellular metabolism by nuclear magnetic resonance. Annu Rev Physiol. 1979;41:749–769. doi: 10.1146/annurev.ph.41.030179.003533. [DOI] [PubMed] [Google Scholar]
  7. Ross B. D., Epstein F. H., Leaf A. Sodium reabsorption in the perfused rat kidney. Am J Physiol. 1973 Nov;225(5):1165–1171. doi: 10.1152/ajplegacy.1973.225.5.1165. [DOI] [PubMed] [Google Scholar]
  8. Ross B. D., Tannen R. L. Effect of decrease in bicarbonate concentration on metabolism of the isolated perfused rat kidney. Clin Sci (Lond) 1979 Jul;57(1):103–111. doi: 10.1042/cs0570103. [DOI] [PubMed] [Google Scholar]
  9. Sehr P. A., Radda G. K. A model kidney transplant studied by phosphorus nuclear magnetic resonance. Biochem Biophys Res Commun. 1977 Jul 11;77(1):195–202. doi: 10.1016/s0006-291x(77)80182-4. [DOI] [PubMed] [Google Scholar]
  10. Steele T. H., Underwood J. L. Renal response to phosphorus deprivation in the isolated rat kidney. Kidney Int. 1978 Feb;13(2):124–128. doi: 10.1038/ki.1978.18. [DOI] [PubMed] [Google Scholar]
  11. Steinmetz P. R. Cellular mechanisms of urinary acidification. Physiol Rev. 1974 Oct;54(4):890–956. doi: 10.1152/physrev.1974.54.4.890. [DOI] [PubMed] [Google Scholar]
  12. Struyvenberg A., Morrison R. B., Relman A. S. Acid-base behavior of separated canine renal tubule cells. Am J Physiol. 1968 May;214(5):1155–1162. doi: 10.1152/ajplegacy.1968.214.5.1155. [DOI] [PubMed] [Google Scholar]
  13. Studer R. K., Borle A. B. Effect of pH on the calcium metabolism of isolated rat kidney cells. J Membr Biol. 1979 Aug;48(4):325–341. doi: 10.1007/BF01869444. [DOI] [PubMed] [Google Scholar]
  14. Tannen R. L. Ammonia metabolism. Am J Physiol. 1978 Oct;235(4):F265–F277. doi: 10.1152/ajprenal.1978.235.4.F265. [DOI] [PubMed] [Google Scholar]
  15. Tannen R. L., Ross B. D. Ammoniagenesis by the isolated perfused rat kidney: the critical role of urinary acidification. Clin Sci (Lond) 1979 Apr;56(4):353–364. doi: 10.1042/cs0560353. [DOI] [PubMed] [Google Scholar]
  16. Tröhler U., Bonjour J. P., Fleisch H. Inorganic phosphate homeostasis. Renal adaptation to the dietary intake in intact and thyroparathyroidectomized rats. J Clin Invest. 1976 Feb;57(2):264–273. doi: 10.1172/JCI108277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. WOLLENBERGER A., RISTAU O., SCHOFFA G. [A simple technic for extremely rapid freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:399–412. [PubMed] [Google Scholar]
  18. Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES