Abstract
1. The effects of thiocyanate, ouabain, ion-substituted Ringer solution and electrochemical gradients on Na+ and Cl- transport were examined using the isolated skin of the marine teleost, Gillichthys mirabilis. 2. Bilateral replacement of Na+ with choline in the bathing solutions reduces net Cl- flux by 93%, indicating that active Cl- transport by the skin is Na-dependent. 3. Thiocyanate inhibits short-circuit current with an ED50 of 6.4 x 10(-4)M, and, at 10(-2)M, decreases Cl-efflux, influx, net flux and short-circuit current by 68, 33, 74 and 81%, respectively. 4. Ouabain (10(-5)M) reduces Cl- efflux and net flux by 56 and 86%, respectively, indicating that the Cl- transport requires Na,K-ATPase. 5. Subsequent addition of thiocyanate to ouabain-treated skin reduces Cl- efflux, net flux and short-circuit current, suggesting that the two agents operate at different sites involved in Cl- transport. 6. Unilateral substitution of gluconate for Cl- on the serosal side does not affect Cl- influx, indicating that Cl- passive transport is via Fickean diffusion, not Cl-Cl exchange diffusion. 7. The addition of NaCl to the mucosal side, which mimics the in vivo sea-water condition, increases Cl- influx and transepithelial potential and decreases tissue resistance. The net flux (secretion) of Cl- with hypertonic saline on the mucosal side (0.51 +/- 0.06 muequiv/cm2 . hr) demonstrates that the skin could secrete Cl- in vivo. 8. Na+ fluxes across the skin are passive, as the observed flux ration (efflux/influx) is similar to that predicted by the Ussing-Teorell equation under both closed- and open-circuit conditions. 9. The permeability ratio (PNa:PCl) in approximately 5.4:1.0, indicating that the skin is more permeable to Na+, and that at least part of the serosa-positive transepithelial potential may be a Na+ diffusion potential. 10. The results suggest that Cl- secretion by Gillichthys skin is secondary active transport involving Na,K-ATPase and serosal Na+.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Degnan K. J., Karnaky K. J., Jr, Zadunaisky J. A. Active chloride transport in the in vitro opercular skin of a teleost (Fundulus heteroclitus), a gill-like epithelium rich in chloride cells. J Physiol. 1977 Sep;271(1):155–191. doi: 10.1113/jphysiol.1977.sp011995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Degnan K. J., Zadunaisky J. A. Open-circuit sodium and chloride fluxes across isolated opercular epithelia from the teleost Fundulus heteroclitus. J Physiol. 1979 Sep;294:483–495. doi: 10.1113/jphysiol.1979.sp012942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Degnan K. J., Zadunaisky J. A. Passive sodium movements across the opercular epithelium: the paracellular shunt pathway and ionic conductance. J Membr Biol. 1980 Aug 7;55(3):175–185. doi: 10.1007/BF01869459. [DOI] [PubMed] [Google Scholar]
- Epstein F. H., Silva P., Forrest J. N., Solomon R. J. Chloride transport and its inhibition by thiocyanate in gills of seawater teleosts. Comp Biochem Physiol A Comp Physiol. 1975 Dec 1;52(4):681–683. doi: 10.1016/s0300-9629(75)80023-5. [DOI] [PubMed] [Google Scholar]
- Evans D. H. Kinetic studies of ion transport by fish gill epithelium. Am J Physiol. 1980 Mar;238(3):R224–R230. doi: 10.1152/ajpregu.1980.238.3.R224. [DOI] [PubMed] [Google Scholar]
- Frizzell R. A., Field M., Schultz S. G. Sodium-coupled chloride transport by epithelial tissues. Am J Physiol. 1979 Jan;236(1):F1–F8. doi: 10.1152/ajprenal.1979.236.1.F1. [DOI] [PubMed] [Google Scholar]
- Kirschner L. B., Greenwald L., Sanders M. On the mechanism of sodium extrusion across the irrigated gill of sea water-adapted rainbow trout (Salmo gairdneri). J Gen Physiol. 1974 Aug;64(2):148–165. [PMC free article] [PubMed] [Google Scholar]
- Klyce S. D., Wong R. K. Site and mode of adrenaline action on chloride transport across the rabbit corneal epithelium. J Physiol. 1977 Apr;266(3):777–799. doi: 10.1113/jphysiol.1977.sp011793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Machen T. E., McLennan W. L. Na+-dependent H+ and Cl- transport in in vitro frog gastric mucosa. Am J Physiol. 1980 May;238(5):G403–G413. doi: 10.1152/ajpgi.1980.238.5.G403. [DOI] [PubMed] [Google Scholar]
- Maetz J., Bornancin M. Biochemical and biophysical aspects of salt excretion by chloride cells in teleosts. Fortschr Zool. 1975;23(2-3):322–362. [PubMed] [Google Scholar]
- Marshall W. S., Bern H. A. Active chloride transport by the skin of a marine teleost is stimulated by urotensin I and inhibited by urotensin II. Gen Comp Endocrinol. 1981 Apr;43(4):484–491. doi: 10.1016/0016-6480(81)90233-1. [DOI] [PubMed] [Google Scholar]
- Marshall W. S., Bern H. A. Teleostean urophysis: urotensin II and ion transport across the isolated skin of a marine teleost. Science. 1979 May 4;204(4392):519–521. doi: 10.1126/science.432657. [DOI] [PubMed] [Google Scholar]
- Marshall W. S., Nishioka R. S. Relation of mitochondria-rich chloride cells to active chloride transport in the skin of a marine teleost. J Exp Zool. 1980 Nov;214(2):147–156. doi: 10.1002/jez.1402140204. [DOI] [PubMed] [Google Scholar]
- Nonnotte G., Nonnotte L., Kirsch R. Chloride cells and chloride exchange in the skin of a sea-water teleost, the shanny (Blennius pholis L.). Cell Tissue Res. 1979 Jul 17;199(3):387–396. doi: 10.1007/BF00236077. [DOI] [PubMed] [Google Scholar]
- Silva P., Solomon R., Spokes K., Epstein F. Ouabain inhibition of gill Na-K-ATPase: relationship to active chloride transport. J Exp Zool. 1977 Mar;199(3):419–426. doi: 10.1002/jez.1401990316. [DOI] [PubMed] [Google Scholar]
- de Renzis G. The branchial chloride pump in the goldfish Carassius auratus: relationship between Cl-/HCO3- and Cl-/Cl-- exchanges and the effect of thiocyanate. J Exp Biol. 1975 Dec;63(3):587–602. doi: 10.1242/jeb.63.3.587. [DOI] [PubMed] [Google Scholar]
