Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1981;319:165–178. doi: 10.1113/jphysiol.1981.sp013899

Sodium dependency of active chloride transport across isolated fish skin (Gillichthys mirabilis).

W S Marshall
PMCID: PMC1243829  PMID: 7320911

Abstract

1. The effects of thiocyanate, ouabain, ion-substituted Ringer solution and electrochemical gradients on Na+ and Cl- transport were examined using the isolated skin of the marine teleost, Gillichthys mirabilis. 2. Bilateral replacement of Na+ with choline in the bathing solutions reduces net Cl- flux by 93%, indicating that active Cl- transport by the skin is Na-dependent. 3. Thiocyanate inhibits short-circuit current with an ED50 of 6.4 x 10(-4)M, and, at 10(-2)M, decreases Cl-efflux, influx, net flux and short-circuit current by 68, 33, 74 and 81%, respectively. 4. Ouabain (10(-5)M) reduces Cl- efflux and net flux by 56 and 86%, respectively, indicating that the Cl- transport requires Na,K-ATPase. 5. Subsequent addition of thiocyanate to ouabain-treated skin reduces Cl- efflux, net flux and short-circuit current, suggesting that the two agents operate at different sites involved in Cl- transport. 6. Unilateral substitution of gluconate for Cl- on the serosal side does not affect Cl- influx, indicating that Cl- passive transport is via Fickean diffusion, not Cl-Cl exchange diffusion. 7. The addition of NaCl to the mucosal side, which mimics the in vivo sea-water condition, increases Cl- influx and transepithelial potential and decreases tissue resistance. The net flux (secretion) of Cl- with hypertonic saline on the mucosal side (0.51 +/- 0.06 muequiv/cm2 . hr) demonstrates that the skin could secrete Cl- in vivo. 8. Na+ fluxes across the skin are passive, as the observed flux ration (efflux/influx) is similar to that predicted by the Ussing-Teorell equation under both closed- and open-circuit conditions. 9. The permeability ratio (PNa:PCl) in approximately 5.4:1.0, indicating that the skin is more permeable to Na+, and that at least part of the serosa-positive transepithelial potential may be a Na+ diffusion potential. 10. The results suggest that Cl- secretion by Gillichthys skin is secondary active transport involving Na,K-ATPase and serosal Na+.

Full text

PDF
165

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Degnan K. J., Karnaky K. J., Jr, Zadunaisky J. A. Active chloride transport in the in vitro opercular skin of a teleost (Fundulus heteroclitus), a gill-like epithelium rich in chloride cells. J Physiol. 1977 Sep;271(1):155–191. doi: 10.1113/jphysiol.1977.sp011995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Degnan K. J., Zadunaisky J. A. Open-circuit sodium and chloride fluxes across isolated opercular epithelia from the teleost Fundulus heteroclitus. J Physiol. 1979 Sep;294:483–495. doi: 10.1113/jphysiol.1979.sp012942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Degnan K. J., Zadunaisky J. A. Passive sodium movements across the opercular epithelium: the paracellular shunt pathway and ionic conductance. J Membr Biol. 1980 Aug 7;55(3):175–185. doi: 10.1007/BF01869459. [DOI] [PubMed] [Google Scholar]
  4. Epstein F. H., Silva P., Forrest J. N., Solomon R. J. Chloride transport and its inhibition by thiocyanate in gills of seawater teleosts. Comp Biochem Physiol A Comp Physiol. 1975 Dec 1;52(4):681–683. doi: 10.1016/s0300-9629(75)80023-5. [DOI] [PubMed] [Google Scholar]
  5. Evans D. H. Kinetic studies of ion transport by fish gill epithelium. Am J Physiol. 1980 Mar;238(3):R224–R230. doi: 10.1152/ajpregu.1980.238.3.R224. [DOI] [PubMed] [Google Scholar]
  6. Frizzell R. A., Field M., Schultz S. G. Sodium-coupled chloride transport by epithelial tissues. Am J Physiol. 1979 Jan;236(1):F1–F8. doi: 10.1152/ajprenal.1979.236.1.F1. [DOI] [PubMed] [Google Scholar]
  7. Kirschner L. B., Greenwald L., Sanders M. On the mechanism of sodium extrusion across the irrigated gill of sea water-adapted rainbow trout (Salmo gairdneri). J Gen Physiol. 1974 Aug;64(2):148–165. [PMC free article] [PubMed] [Google Scholar]
  8. Klyce S. D., Wong R. K. Site and mode of adrenaline action on chloride transport across the rabbit corneal epithelium. J Physiol. 1977 Apr;266(3):777–799. doi: 10.1113/jphysiol.1977.sp011793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Machen T. E., McLennan W. L. Na+-dependent H+ and Cl- transport in in vitro frog gastric mucosa. Am J Physiol. 1980 May;238(5):G403–G413. doi: 10.1152/ajpgi.1980.238.5.G403. [DOI] [PubMed] [Google Scholar]
  10. Maetz J., Bornancin M. Biochemical and biophysical aspects of salt excretion by chloride cells in teleosts. Fortschr Zool. 1975;23(2-3):322–362. [PubMed] [Google Scholar]
  11. Marshall W. S., Bern H. A. Active chloride transport by the skin of a marine teleost is stimulated by urotensin I and inhibited by urotensin II. Gen Comp Endocrinol. 1981 Apr;43(4):484–491. doi: 10.1016/0016-6480(81)90233-1. [DOI] [PubMed] [Google Scholar]
  12. Marshall W. S., Bern H. A. Teleostean urophysis: urotensin II and ion transport across the isolated skin of a marine teleost. Science. 1979 May 4;204(4392):519–521. doi: 10.1126/science.432657. [DOI] [PubMed] [Google Scholar]
  13. Marshall W. S., Nishioka R. S. Relation of mitochondria-rich chloride cells to active chloride transport in the skin of a marine teleost. J Exp Zool. 1980 Nov;214(2):147–156. doi: 10.1002/jez.1402140204. [DOI] [PubMed] [Google Scholar]
  14. Nonnotte G., Nonnotte L., Kirsch R. Chloride cells and chloride exchange in the skin of a sea-water teleost, the shanny (Blennius pholis L.). Cell Tissue Res. 1979 Jul 17;199(3):387–396. doi: 10.1007/BF00236077. [DOI] [PubMed] [Google Scholar]
  15. Silva P., Solomon R., Spokes K., Epstein F. Ouabain inhibition of gill Na-K-ATPase: relationship to active chloride transport. J Exp Zool. 1977 Mar;199(3):419–426. doi: 10.1002/jez.1401990316. [DOI] [PubMed] [Google Scholar]
  16. de Renzis G. The branchial chloride pump in the goldfish Carassius auratus: relationship between Cl-/HCO3- and Cl-/Cl-- exchanges and the effect of thiocyanate. J Exp Biol. 1975 Dec;63(3):587–602. doi: 10.1242/jeb.63.3.587. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES