Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1981;319:311–323. doi: 10.1113/jphysiol.1981.sp013910

Alterations of myocardial capillary permeability by albumin in the isolated, perfused rabbit heart.

G E Mann
PMCID: PMC1243840  PMID: 6798198

Abstract

1. Capillary permeability-surface area products for 22Na, 51Cr-EDTA (mol. wt. 357), [57Co]cyanocobalamin (mol. wt. 1353) and 125I-labelled insulin (mol. wt. approximately or equal to 6000) were measured using the single-passage, multiple-tracer dilution technique in isolated rabbit hearts perfused at constant flows between 0.2 and 4.7 ml. min-1 . g-1. 2. In hearts perfused with a Krebs-Ringer solution containing bovine albumin (10 g . l . -1), the permeability-surface area products for 51Cr-EDTA and [57Co]cyanocobalamin increased as the perfusion rate increased, but reached constant values at flows above 2 ml . min-1 . g-1. For 125I-labelled insulin a diffusion-limited value of 0.06 +/- 0.02 ml . min-1 . g-1 (mean +/- S.E., n = 10) was measured at significantly lower perfusion rates. As the value for 22Na increased continuously with increments in flow, only a flow-limited value could be estimated. 3. When hearts were initially perfused with albumin (10 g . l . -1) and then with an albumin-free Krebs-Ringer solution, a significant increase in the permeability-surface area for 22Na, 51Cr-EDTA and [57Co]cyanocobalamin was observed. 4. In hearts perfused with albumin capillary permeability coefficients calculated for 22Na, 51Cr-EDTA. [57Co]cyanocobalamin and 125I-labelled insulin were respectively: 10.5, 3.5, 2.1 and 0.21 x 10(-5) cm.sec-1. 5. These findings confirm that bovine albumin reduces the permeability of myocardial capillaries to hydrophilic solutes of varying molecular sizes and this effect may be the result of an interaction of albumin with the pathways for transcapillary exchange.

Full text

PDF
311

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez O. A., Yudilevich D. L. Heart capillary permeability to lipid-insoluble molecules. J Physiol. 1969 May;202(1):45–58. doi: 10.1113/jphysiol.1969.sp008794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bassingthwaighte J. B., Yipintsoi T., Grabowski E. F. Myocardial capillary permeability: hydrophilic solutes penetrate 100 A intercellular clefts. Bibl Anat. 1975;13:24–27. [PMC free article] [PubMed] [Google Scholar]
  3. Bassingthwaighte J. B., Yipintsoi T., Harvey R. B. Microvasculature of the dog left ventricular myocardium. Microvasc Res. 1974 Mar;7(2):229–249. doi: 10.1016/0026-2862(74)90008-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CRONE C. THE PERMEABILITY OF CAPILLARIES IN VARIOUS ORGANS AS DETERMINED BY USE OF THE 'INDICATOR DIFFUSION' METHOD. Acta Physiol Scand. 1963 Aug;58:292–305. doi: 10.1111/j.1748-1716.1963.tb02652.x. [DOI] [PubMed] [Google Scholar]
  5. Crone C., Christensen O. Transcapillary transport of small solutes and water. Int Rev Physiol. 1979;18:149–213. [PubMed] [Google Scholar]
  6. Curry F. E., Michel C. C. A fiber matrix model of capillary permeability. Microvasc Res. 1980 Jul;20(1):96–99. doi: 10.1016/0026-2862(80)90024-2. [DOI] [PubMed] [Google Scholar]
  7. Danielli J. F. Capillary permeability and oedema in the perfused frog. J Physiol. 1940 Mar 14;98(1):109–129. doi: 10.1113/jphysiol.1940.sp003837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Drinker C. K. The permeability and diameter of the capillaries in the web of the brown frog (R. temporaria) when perfused with solutions containing pituitary extract and horse serum. J Physiol. 1927 Aug 8;63(3):249–269. doi: 10.1113/jphysiol.1927.sp002401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Durán W. N., Alvarez O. A., Yudilevich D. L. Influence of maximal vasodilatation on glucose and sodium blood-tissue transport in canine heart. Microvasc Res. 1973 Nov;6(3):347–359. doi: 10.1016/0026-2862(73)90083-6. [DOI] [PubMed] [Google Scholar]
  10. Durán W. N., Marsicano T. H., Anderson R. W. Capillary reserve in isometrically contracting dog hearts. Am J Physiol. 1977 Aug;233(2):H276–H281. doi: 10.1152/ajpheart.1977.233.2.H276. [DOI] [PubMed] [Google Scholar]
  11. Durán W. N., Yudilevich D. L. Estimate of capillary permeability coefficients of canine heart to sodium and glucose. Microvasc Res. 1978 Mar;15(2):195–205. doi: 10.1016/0026-2862(78)90018-3. [DOI] [PubMed] [Google Scholar]
  12. Gamble J. The effect of low concentrations of bovine albumin on the vascular transudation coefficient of the isolated perfused rat mesentery [proceedings]. J Physiol. 1979 Apr;289:63P–64P. [PubMed] [Google Scholar]
  13. Guller B., Yipintsoi T., Orvis A. L., Bassingthwaighte J. B. Myocardial sodium extraction at varied coronary flows in the dog. Estimation of capillary permeability of residue and outflow detection. Circ Res. 1975 Sep;37(3):359–378. doi: 10.1161/01.res.37.3.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harris T. R., Burks D. D., Custer P. L. Coronary capillary permeability and tissue volumes for sucrose and water in dogs: a comparison of bolus and constant infusion multiple-indicator methods. Cardiovasc Res. 1978 Sep;12(9):537–546. doi: 10.1093/cvr/12.9.537. [DOI] [PubMed] [Google Scholar]
  15. Haunsø S., Paaske W. P., Sejrsen P., Amtorp O. Capillary permeability in canine myocardium as determined by bolus injection, residue detection. Acta Physiol Scand. 1980 Apr;108(4):389–397. doi: 10.1111/j.1748-1716.1980.tb06549.x. [DOI] [PubMed] [Google Scholar]
  16. L'Abbate A., Mildenberger R. R., Zborowska-Sluis D. T., Klassen G. A. Myocardial tissue recruitment in the dog as determined by double tracer dilution method. Circ Res. 1976 Aug;39(2):276–281. doi: 10.1161/01.res.39.2.276. [DOI] [PubMed] [Google Scholar]
  17. Laughlin M. H., Diana J. N. Myocardial transcapillary exchange in the hypertrophied heart of the dog. Am J Physiol. 1975 Sep;229(3):838–846. doi: 10.1152/ajplegacy.1975.229.3.838. [DOI] [PubMed] [Google Scholar]
  18. Levick J. R., Michel C. C. The effect of bovine albumin on the permeability of frog mesenteric capillaries. Q J Exp Physiol Cogn Med Sci. 1973 Jan;58(1):87–97. doi: 10.1113/expphysiol.1973.sp002194. [DOI] [PubMed] [Google Scholar]
  19. Levick J. R., Michel C. C. The permeability of individually perfused frog mesenteric capillaries to T1824 and T1824-albumin as evidence for a large pore system. Q J Exp Physiol Cogn Med Sci. 1973 Jan;58(1):67–85. doi: 10.1113/expphysiol.1973.sp002192. [DOI] [PubMed] [Google Scholar]
  20. MARTIN P., YUDILEVICH D. A THEORY FOR THE QUANTIFICATION OF TRANSCAPILLARY EXCHANGE BY TRACER-DILUTION CURVES. Am J Physiol. 1964 Jul;207:162–168. doi: 10.1152/ajplegacy.1964.207.1.162. [DOI] [PubMed] [Google Scholar]
  21. Mann G. E. Capillary permeability-surface area products in the isolated, perfused rabbit heart [proceedings]. J Physiol. 1979 Jun;291:7P–8P. [PubMed] [Google Scholar]
  22. Mann G. E., Smaje L. H., Yudilevich D. L. Permeability of the fenestrated capillaries in the cat submandibular gland to lipid-insoluble molecules. J Physiol. 1979 Dec;297(0):335–354. doi: 10.1113/jphysiol.1979.sp013043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mason J. C., Curry F. E., Michel C. C. The effects of proteins upon the filtration coefficient of individually perfused frog mesenteric capillaries. Microvasc Res. 1977 Mar;13(2):185–202. doi: 10.1016/0026-2862(77)90084-x. [DOI] [PubMed] [Google Scholar]
  24. Myhre K., Steen J. B. The effect of plasma proteins on the capillary permeability in the rete mirabile of the eel (Anguilla vulgaris L.). Acta Physiol Scand. 1977 Jan;99(1):98–104. doi: 10.1111/j.1748-1716.1977.tb10357.x. [DOI] [PubMed] [Google Scholar]
  25. RENKIN E. M. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol. 1959 Dec;197:1205–1210. doi: 10.1152/ajplegacy.1959.197.6.1205. [DOI] [PubMed] [Google Scholar]
  26. Renkin E. M. Multiple pathways of capillary permeability. Circ Res. 1977 Dec;41(6):735–743. doi: 10.1161/01.res.41.6.735. [DOI] [PubMed] [Google Scholar]
  27. Rose C. P., Goresky C. A., Bélanger P., Chen M. J. Effect of vasodilation and flow rate on capillary permeability surface product and interstitial space size in the coronary circulation. A frequency domain technique for modeling multiple dilution data with Laguerre functions. Circ Res. 1980 Sep;47(3):312–328. doi: 10.1161/01.res.47.3.312. [DOI] [PubMed] [Google Scholar]
  28. Rose C. P., Goresky C. A. Vasomotor control of capillary transit time heterogeneity in the canine coronary circulation. Circ Res. 1976 Oct;39(4):541–554. doi: 10.1161/01.res.39.4.541. [DOI] [PubMed] [Google Scholar]
  29. SCHAFER D. E., JOHNSON J. A. PERMEABILITY OF MAMMALIAN HEART CAPILLARIES TO SUCROSE AND INULIN. Am J Physiol. 1964 May;206:985–991. doi: 10.1152/ajplegacy.1964.206.5.985. [DOI] [PubMed] [Google Scholar]
  30. Vargas F. F., Blackshear G. L., Majerle R. J. Permeability and model testing of heart capillaries by osmotic and optical methods. Am J Physiol. 1980 Oct;239(4):H464–H468. doi: 10.1152/ajpheart.1980.239.4.H464. [DOI] [PubMed] [Google Scholar]
  31. Vargas F., Johnson J. A. Permeability of rabbit heart capillaries to nonelectrolytes. Am J Physiol. 1967 Jul;213(1):87–93. doi: 10.1152/ajplegacy.1967.213.1.87. [DOI] [PubMed] [Google Scholar]
  32. Wittmers L. E., Jr, Bartlett M., Johnson J. A. Estimation of the capillary permeability coefficients of inulin in various tissues of the rabbit. Microvasc Res. 1976 Jan;11(1):67–78. doi: 10.1016/0026-2862(76)90078-9. [DOI] [PubMed] [Google Scholar]
  33. YUDILEVICH D., MARTINDEJULIAN P. POTASSIUM, SODIUM, AND IODIDE TRANSCAPILLARY EXCHANGE IN THE DOG HEART. Am J Physiol. 1965 May;208:959–967. doi: 10.1152/ajplegacy.1965.208.5.959. [DOI] [PubMed] [Google Scholar]
  34. Ziegler W. H., Goresky C. A. Transcapillary exchange in the working left ventricle of the dog. Circ Res. 1971 Aug;29(2):181–207. doi: 10.1161/01.res.29.2.181. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES