Abstract
1. Intracellular K increases the ouabain-sensitive Na-K exchange in human red blood cells. Pump rate increases hyperbolically with internal K with a K12 for K of 2.58 m-mole/l. red blood cells. Li also stimulates the pump rate, but with a much higher K12. The stimulation does not result from a change in the affinity of the pump for its substrates Na, K or Mg or for the product, phosphate. 2. The effect of cell K on the Na-Na exchange is biphasic. At low concentrations it decreases the exchange rate but then the exchange increases linearly with cell k concentration. 3. Stimulation of the pump rate by internal K can be demonstrated in reconstituted ghosts but only if the ratio of the volume of cells to that of solution at the time of haemolysis is high. Stimulation is not observed if the ghosts contain an efficient system for rephosphorylating ADP to ATP, such as creatine phosphate and creatine kinase, or if the measurements are made with iodoacetamide which inhibits rephosphorylation of ADP by inhibiting the enzyme glyceraldehyde-3-phosphate dehydrogenase. 4. Cells with low internal K and Li have low ATP concentrations, and ATP increases hyperbolically with internal K or Li with the same K12 as does the pump rate. In cells depleted of substrate intracellular K does not stimulate the pump rate. 5. The effect of K and Li on the pump rate probably does not result from enhanced activity of any of the enzymes below phosphofructokinase in the glycolytic pathway.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banerjee S. P., Wong S. M. Effect of potassium on sodium-dependent adenosine diphosphate-adenosine triphosphate exchange activity in kidney microsomes. J Biol Chem. 1972 Sep 10;247(17):5409–5413. [PubMed] [Google Scholar]
- Bashan N., Moses S., Gross Y., Livine A. The effect of Na+ and K+ on glycolytic enzymes: differential response of pyruvate kinase from dog and human erythrocytes. FEBS Lett. 1975 Jul 1;54(3):323–326. doi: 10.1016/0014-5793(75)80931-8. [DOI] [PubMed] [Google Scholar]
- Bodemann H. H., Hoffman J. F. Side-dependent effects of internal versus external Na and K on ouabain binding to reconstituted human red blood cell ghosts. J Gen Physiol. 1976 May;67(5):497–525. doi: 10.1085/jgp.67.5.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavieres J. D., Glynn I. M. Sodium-sodium exchange through the sodium pump: the roles of ATP and ADP. J Physiol. 1979 Dec;297(0):637–645. doi: 10.1113/jphysiol.1979.sp013061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garay R. P., Garrahan P. J. The interaction of adenosinetriphosphate and inorganic phosphate with the sodium pump in red cells. J Physiol. 1975 Jul;249(1):51–67. doi: 10.1113/jphysiol.1975.sp011002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garay R. P., Garrahan P. J. The interaction of sodium and potassium with the sodium pump in red cells. J Physiol. 1973 Jun;231(2):297–325. doi: 10.1113/jphysiol.1973.sp010234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garrahan P. J., Rega A. F. Cation loading of red blood cells. J Physiol. 1967 Nov;193(2):459–466. doi: 10.1113/jphysiol.1967.sp008371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glynn I. M., Hoffman J. F. Nucleotide requirements for sodium-sodium exchange catalysed by the sodium pump in human red cells. J Physiol. 1971 Oct;218(1):239–256. doi: 10.1113/jphysiol.1971.sp009612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glynn I. M., Lew V. L., Lüthi U. Reversal of the potassium entry mechanism in red cells, with and without reversal of the entire pump cycle. J Physiol. 1970 Apr;207(2):371–391. doi: 10.1113/jphysiol.1970.sp009067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOFFMAN J. F. The active transport of sodium by ghosts of human red blood cells. J Gen Physiol. 1962 May;45:837–859. doi: 10.1085/jgp.45.5.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knight A. B., Welt L. G. Intracellular potassium. A determinant of the sodium-potassium pump rate. J Gen Physiol. 1974 Mar;63(3):351–373. doi: 10.1085/jgp.63.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kropp D. L., Sachs J. R. Kinetics of the inhibition of the Na-K pump by tetrapropylammonium chloride. J Physiol. 1977 Jan;264(2):471–487. doi: 10.1113/jphysiol.1977.sp011678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., PASSONNEAU J. V., HASSELBERGER F. X., SCHULZ D. W. EFFECT OF ISCHEMIA ON KNOWN SUBSTRATES AND COFACTORS OF THE GLYCOLYTIC PATHWAY IN BRAIN. J Biol Chem. 1964 Jan;239:18–30. [PubMed] [Google Scholar]
- Otto M., Jacobasch G., Rapoport S. A comparison of the influence of potassium and ammonium ions on the phosphofructokinases from rabbit muscle and rat erythrocytes. Eur J Biochem. 1976 May 17;65(1):201–206. doi: 10.1111/j.1432-1033.1976.tb10406.x. [DOI] [PubMed] [Google Scholar]
- Parker J. C., Hoffman J. F. The role of membrane phosphoglycerate kinase in the control of glycolytic rate by active cation transport in human red blood cells. J Gen Physiol. 1967 Mar;50(4):893–916. doi: 10.1085/jgp.50.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Proverbio F., Hoffman J. F. Membrane compartmentalized ATP and its preferential use by the Na,K-ATPase of human red cell ghosts. J Gen Physiol. 1977 May;69(5):605–632. doi: 10.1085/jgp.69.5.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rapoport I., Rapoport S., Maretzki D., Elsner R. The breakdown of adenine nucleotides in glucose-depleted human red cells. Acta Biol Med Ger. 1979;38(10):1419–1429. [PubMed] [Google Scholar]
- Robinson J. D. K+ stimulation of ADP/ATP exchange catalyzed by the (Na+ + K+)-dependent ATPase. Biochim Biophys Acta. 1977 Sep 15;484(1):161–168. doi: 10.1016/0005-2744(77)90121-8. [DOI] [PubMed] [Google Scholar]
- Rose I. A. The state of magnesium in cells as estimated from the adenylate kinase equilibrium. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1079–1086. doi: 10.1073/pnas.61.3.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs J. R., Ellory J. C., Kropp D. L., Dunham P. B., Hoffman J. F. Antibody-induced alterations in the kinetic characteristics of the Na:K pump in goat red blood cells. J Gen Physiol. 1974 Apr;63(4):389–414. doi: 10.1085/jgp.63.4.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs J. R. Kinetics of the inhibition of the Na-K pump by external sodium. J Physiol. 1977 Jan;264(2):449–470. doi: 10.1113/jphysiol.1977.sp011677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs J. R. Mechanistic implications of the potassium-potassium exchange carried out by the sodium-potassium pump. J Physiol. 1981 Jul;316:263–277. doi: 10.1113/jphysiol.1981.sp013786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs J. R. The order of release of sodium and addition of potassium in the sodium-potassium pump reaction mechanism. J Physiol. 1980 May;302:219–240. doi: 10.1113/jphysiol.1980.sp013239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suelter C. H. Enzymes activated by monovalent cations. Science. 1970 May 15;168(3933):789–795. doi: 10.1126/science.168.3933.789. [DOI] [PubMed] [Google Scholar]
