Skip to main content
Journal of Sichuan University (Medical Sciences) logoLink to Journal of Sichuan University (Medical Sciences)
. 2025 May 20;56(3):761–769. [Article in Chinese] doi: 10.12182/20250560203

AKT1/AMPK通路在白内障患者晶状体上皮细胞氧化应激中的调控作用

Regulatory Role of the AKT1/AMPK Pathway in Oxidative Stress of Lens Epithelial Cells in Cataract Patients

Yan HUANG 1,2,3, Bingjing LYU 4, Kunyuan TANG 5, Ke HU 1,Δ
PMCID: PMC12439649  PMID: 40964109

Abstract

Objective

To elucidate the regulatory role and the underlying molecular mechanisms of serine/threonine protein kinase 1 (AKT1) in the lens epithelium of patients with age-related cataract (ARC).

Methods

1) Differentially expressed genes in ARC were screened using bioinformatics analysis (Genecard and GEO database GSE213546), and key genes were identified through functional enrichment analysis (KEGG and GO). 2) An oxidative stress model of lens epithelial cells was established by treating HLE-B3 cells with 200 μmol/L H2O2 for 24 h. RT-qPCR and Western blot were performed to assess AKT1 gene and protein expression changes. 3) Model cells were randomly divided into a si-NC group transfected with si-NC plasmids and 3 parallel si-AKT1 groups transfected with 3 types of si-AKT1 plasmids. A control + si-NC group was also set up, in which HLE-B3 cells not treated with H2O2 were transfected with si-NC empty plasmids. The AKT1 gene and protein expression levels in the si-NC and si-AKT1 groups were determined by RT-qPCR and Western blot. Two si-AKT1 parallel groups demonstrating the most significant changes in expression levels were selected for further experiments. The protein expression levels of AMPK and phosphorylated AMPK (p-AMPK) in the si-NC group, the two selected si-AKT1 parallel groups, and the control + si-NC group were determined by Western blot. A si-AKT1 parallel group demonstrating significant changes in p-AMPK/AMPK values was selected and treated with Acadesine (AICAR), an AMPK agonist, to verify the role of the AMPK pathway. Western blot was performed to determine Bcl-2 and Bax protein levels in the si-NC group, the control + si-NC group, and the si-AKT1 group before and after the administration of AICAR. Flow cytometry was performed to measure apoptosis and reactive oxygen species (ROS) levels, while ELISA kits were used to assess the levels of superoxide dismutase (SOD), malondialdehyde (MDA), and reduced glutathione (GSH).

Results

1) Through bioinformatics analysis, 78 differentially expressed genes were identified, with AKT1 significantly upregulated in ARC samples (P < 0.05) and enriched in the AMPK pathway. 2) Compared with cells not treated with H2O2, AKT1 mRNA and protein expression increased in the oxidative stress model cells. 3) The p-AMPK/AMPK ratio was higher in the si-NC group than that in the control + si-NC group. In contrast, AKT1 knockdown suppressed AMPK pathway activity, with all the si-AKT1 groups showing a significantly decreased p-AMPK/AMPK ratio compared to that of the si-NC group (P < 0.05). Compared with the control + si-NC group, the si-NC group exhibited elevated ROS and MDA levels, increased apoptosis rate, reduced SOD and GSH levels, downregulated Bcl-2, and upregulated Bax (all P < 0.05). Compared to those in the si-NC group, these indicators were improved in the si-AKT1 group (all P < 0.05). However, compared with the findings before AICAR treatment, these effects were antagonized after AICAR treatment in the si-AKT1 group (all P < 0.05).

Conclusion

The oxidative stress-related gene AKT1 may be a key pathogenic factor in cataract, and AKT1 induces oxidative stress and apoptosis in lens epithelial cells by modulating AMPK pathway activity.

Keywords: Age-related cataract, Oxidative stress, Serine/Threonine kinase 1, Protein kinase


年龄相关性白内障(age-related cataract, ARC)是最常见的白内障类型,由外伤、中毒、辐射等原因导致晶体代谢紊乱而引发蛋白变性从而引发白内障[1]。流行病学显示[2],96%的60岁以上老年人存在不同程度或形式的晶状体浑浊。研究表明[3-4],ARC的发生主要与氧自由基损伤晶状体上皮细胞进而导致晶状体蛋白可溶性和构象发生改变、蛋白质关联和聚积有关。氧化应激是指活性氧(reactive oxygen species,ROS)水平升高的状态,被视为白内障发生与发展的共同机制。理论上,只要能够阻断导致上皮细胞氧化应激的途径,就有可能有效地预防或逆转ARC的发展过程,但最近的研究指出[5],目前尚无有效的药物能逆转晶状体混浊以延缓ARC形成,因而深入探索参与ARC氧化应激和炎症过程的指标,可为ARC治疗提供新的思路。

AMPK是调节细胞能量代谢和炎症反应的关键因子,可作用于丝氨酸/苏氨酸蛋白激酶(serine/threonine protein kinase, AKT)靶点[6]。基于此,本研究拟通过构建晶状体上皮细胞氧化应激模型,分析AKT1/AMPK通路在晶状体上皮细胞氧化应激和凋亡中的调控作用,为白内障患者氧化应激的治疗提供新思路和新方向。

1. 材料与方法

1.1. 材料

1.1.1. 主要实验仪器和试剂

NanoDrop微量分光光度计、凝胶成像系统、全自动酶标仪、CO2培养箱、低温冷冻离心机、(美国Thermo Fisher公司);PCR扩增仪、实时荧光定量PCR仪(美国罗氏公司);电泳仪、电泳槽(美国Bio-Rad公司);恒温水浴锅、掌上离心机(上海碧云天生物科技有限公司);倒置显微镜(上海蔡康光学仪器有限公司);微量移液器(德国艾本德公司);人晶状体上皮HLE-B3细胞(武汉旗赛生物科技有限公司);DMEM细胞培养基、0.25%胰蛋白酶(美国Gibco公司);青霉素/链霉素溶液、无血清细胞冻存液、快速转膜液、快速封闭液、SDS-PAGE蛋白上样缓冲液、qPCR试剂盒、预染蛋白marker(上海翊圣生物科技股份有限公司);RNA EasyTM动物RNA抽提试剂盒、BeyoRTTM II cDNA第一链合成试剂盒、蛋白酶抑制剂、超氧化物歧化酶(superoxide dismutase, SOD)、丙二醛(malondialdehyde, MDA)、还原性谷胱甘肽(glutathione, GSH)检测试剂盒、超敏ECL化学发光试剂盒(上海碧云天生物科技有限公司);PBS缓冲液、30%制胶液(29∶1)、1.5mol/L Tris(pH8.8)、1.0 mol/L Tris(pH6.8)、PAGE胶凝固剂、10%SDS、PAGE胶促凝剂、ddH2O(上海生工生物工程有限公司);AMPK抗体、p-AMPK抗体、AKT1抗体、GAPDH抗体(美国CST公司);TBST缓冲液(pH7.4)(安徽白鲨生物科技有限公司);BCA蛋白定量试剂盒(武汉三鹰生物科技有限公司);引物(北京擎科生物科技有限公司);si-AKT1及si-NC(上海汉恒生物科技有限公司);Acadesine(美国Medchemexress生物科技公司)。

1.2. 数据获取、标准化及差异表达分析

通过Genecard(https://www.genecards.org/Search/Keyword?queryString=fibrosis)检索oxidative stress and fibrosis相关基因。设置标准为大于Relevance score的median。然后,从GEO(http://www.ncbi.nlm.nih.gov/geo/)下载年龄相关性白内障数据集GSE213546。使用GEO2R标准化数据(limma包)的normalizeBetweenArrays函数依据表达中位数对样本进行标准化处理。通过比较白内障组织和对照组的基因表达值,采用Bonferroni法调整P值,并将调整后的P值(adj.p.Value)<0.05且差异倍数logFC> 2 的基因定义为差异表达基因。

1.3. 功能富集分析和加权基因共表达网络分析(weighted gene co-expression network analysis, WGCNA)

功能富集分析:使用DAVID数据库(https://david.ncifcrf.gov/)数据库对差异基因进行GO和KEGG分析。通过将差异表达的基因与KEGG通路数据库进行匹配,明确识别出参与信号传导过程、代谢途径或其他关键生理活动的潜在关键基因。

R包WGCNA被用于共表达分析,筛选出枢纽基因(hub 基因),具有最高表型相关性的模块基因被用于功能富集分析。

1.4. 蛋白质互作网络(protein-protein interaction networks, PPI)

通过String网站构建PPI网络。使用Cytoscape 3.6.1软件处理PPI网络,并进行聚类分析,找出最关键的模块分子。使用匹配蛋白蛋白进行网络构建后,通过Analysis进行网络分析后再将形成的结果导出。通过Cytoscape 软件的Hubba软件包用于识别重要的hub基因,再通过MCC算法进行计算。最后对显著模块中的基因进行KEGG和GO富集分析。

1.5. GeneMANIA分析

输入目的查询基因,系统自动检索相关的数据集,对每个功能性基因进行加权处理。通过GeneMANIA进一步分析hub基因,探索其相互作用基因,并预测其共定位、共表达和共享蛋白结构域等相关性。

1.6. 细胞培养与转染

1.6.1. 细胞培养

HLE-B3细胞常规培养于含10% FBS和1%青霉素/链霉素的DMEM培养基中(37 ℃、体积分数5% CO₂),每1~2 d换液,70%~80%融合时传代。实验分组:以0和200 μmol/L H₂O₂分别处理细胞24 h,构建氧化应激模型,RT-qPCR以及Western blot检测AKT1的基因和蛋白表达变化。

1.6.2. 细胞转染和分组

分组1:氧化应激模型细胞按2×105/孔接种于24孔板中,加入500 μL含血清DMEM培养基,培养24 h,至70%~80%融合;提前6~8 h用用Opti-MEM饥饿处理需要转染的细胞,随机分为si-NC、si-AKT1-1、si-AKT1-2和si-AKT1-3组。取若干EP管,每管分别加50 μL Opti-MEM培养基与1 μg si-NC DNA、si-AKT1-1 DNA、si-AKT1-2 DNA和si-AKT1-3 DNA混匀,配制成质粒溶液,PBS洗涤,加入400 μL无血清DMEM培养基(A管)。取若干EP管,每管加入50 μL Opti-MEM与2-5 μL的Lipo2000混匀(B管)。取A管和B管内容物混合后,加至含细胞与培养基的孔中,孵育4 h,更换含血清培养基,去除复合物。24 h后在显微镜下统计表达绿色荧光的细胞,计算转染效率,当转染效率≥70%,可以进行后续试验。24~48 h收集细胞,RT-qPCR以及Western blot检测,检测AKT-1的基因和蛋白表达变化,筛选出表达变化最明显的si-AKT1-2、si-AKT1-3组,再进行第二次分组。分组2:氧化应激模型细胞分为H2O2+si-NC组、H2O2+si-AKT1-2组和H2O2+si-AKT1-3组(处理同si-NC组、si-AKT1-2组和+si-AKT1-3组),再加一个control+si-NC组(以si-NC空质粒转染未经H₂O₂处理的HLE-B3细胞)。Western blot检测分组2的Bcl-2、Bax、AMPK、AMPK磷酸化的蛋白表达水平,流式细胞术检测细胞凋亡水平和活性氧(reactive oxygen species, ROS)水平,ELISA试剂盒检测SOD、MDA、 GSH水平。分组3〔AMPK激动剂Acadesine(AICAR)验证〕:氧化应激模型细胞分为H2O2+si-NC组、H2O2+si-AKT1-2组和H2O2+si-AKT1-2+AICAR组,前两组处理同前,H2O2+si-AKT1-2+AICAR组在si-AKT1-2组的基础上,加入 1 mmol/L AICAR处理。24 h后,ELISA法检测MDA,SOD、GSH含量,流式细胞术检测ROS水平和细胞凋亡,Western blot 检测Bcl-2和Bax表达。

1.7. RT-qPCR实验

取各组细胞,向裂解液中缓慢倒入等体积的结合液,将混合物(包括沉淀物)小心转移至纯化柱内,12 000×g离心30 s,提取细胞总RNA。AKT1引物序列:正向:5'-CGGAGGATGAGGTGTATGAG-3',反向:5'-GCTGCCACTCGAAGAAGTA-3',扩增产物长度152 bp;内参GAPDH引物序列:正向:5'-AATCCCATCACCATCTTCCA-3',反向:5'-TGGACTCCACGACGTACTCA-3',扩增产物长度120 bp。配置反转录体系,采用qPCR试剂盒进行PCR反应:95 ℃预变性2 min,循环1次,95 ℃变性10 s,60 ℃退火30 s,72 ℃延伸15 s,共进行40个循环。通过1%琼脂糖凝胶电泳检测PCR产物。2-ΔΔCt计算基因相对表达量。

1.8. Western blot检测

取各组细胞,检测AKT1、Bcl-2、Bax、AMPK、AMPK磷酸化的蛋白表达水平。BCA测定蛋白浓度后,以SDS-PAGE将蛋白质根据其分子量进行分离,还原剂混合后加载到凝胶孔中。将凝胶迁移到稀释牛血清白蛋白(BSA)缓冲液中, 37 ℃孵育30 min,洗涤后加入二抗,最后以HRP-ECL发光法检测,标定Marker。使用ImageJ软件(Version 1.53)进行灰度值检测,以目的蛋白条带与内参蛋白β-actin条带的比值为目的蛋白的相对表达水平。

1.9. 流式细胞术检测ROS和细胞凋亡水平

取各组细胞,去除细胞培养液后,加入稀释的DCFH-DA,放置于37 ℃的培养箱内孵育20 min,无血清培养液洗涤细胞3次,彻底去除未被吸收和结合的DCFH-DA。然后,使用激光共聚焦显微镜观察其荧光信号。参数设置:采用488 nm作为激发波长,525 nm作为发射波长,对比刺激前后荧光强度变化进行实时监测或逐时点记录。DCF与FITC具有相似的荧光谱,因此可以使用FITC相关参数来检测DCF信号。DCF信号越高,表明细胞内ROS水平越高。

收集细胞培养液,PBS洗涤贴壁细胞,胰酶消化后离心(1 000×g,5 min)收集细胞,重悬后加入Annexin V-FITC和碘化丙啶(PI)避光染色10~20 min,冰浴后立即上机检测。通过流式细胞仪(激发波长488 nm,发射波长525 nm)分析凋亡率,以Annexin V+/PI−(早期凋亡)和Annexin V+/PI+(晚期凋亡)的总和计算凋亡细胞比例。

1.10. ELISA法检测SOD、 MDA和GSH

取各组细胞,按照说明书中的实验步骤进行操作,计算样品中总SOD活力,并以百分比表征。百分比越高,总SOD活力越高。

取各组细胞,按照说明书中的实验步骤进行操作,检测MDA和GSH表达水平。

1.11. 统计学方法

本研究中所有的数据均通过SPSS 23.0软件进行统计分析,并使用Graphpad Prism9进行柱状图绘制。研究中的计量数据采用Inline graphic表示,正态分布的计量资料通过两独立样本t检验进行比较,非正态分布的计量资料采用Mann-Whitney U检验。多组之间是否存在整体差异采用单因素方差分析(ANOVA),而多组间两两比较则应用SNK(Student-Newman-Keuls)法。P<0.05为差异有统计学意义。

2. 结果

2.1. 生信分析结果

结果显示,本次检索获得蛋白编码基因共6138个。结合GEO数据集GSE213546(3例ARC/3对照),使用limma分析(logFC>0.585,P<0.05)鉴定1174个差异基因。最后,取交集后最终获得78个共同存在且表现出显著变化的重要差异基因(附图1)。通过KEGG分析:78个差异基因主要集中在AMPK通路中(附图2A)。进一步分析AMPK通路富集的ARC差异基因,结果显示,AKT1在ARC样本中的表达水平上调(附图2B)。进一步通过GO分析,发现AKT1与上皮细胞的生物学过程密切相关,这些过程中上皮细胞在维持组织结构和功能中发挥着重要作用,主要表现为紧密的细胞间连接和细胞极性(附图3)。通过MCC算法,排列前十的hub基因为CD34TNFRSF1ACD8AFGF2AKT1FOXP3CCL5CD80PTPRCARG2,发现AKT1在hub基因中的权重最高(附图4)。GENEMANIA分析显示AKT1与氧化应激响应和凋亡显著相关(附图5)。KEGG分析证实差异基因(CFTRAKT1等)富集于AMPK通路,且AKT1通过调控AMPK活性影响晶状体上皮细胞氧化应激及凋亡。结合生物信息学结果,选定AKT1作为关键靶点进行后续机制验证。所有附图请见网络附件。

2.2. AKT1在H2O2诱导的氧化应激细胞模型中的表达水平上调

H2O2诱导晶状体上皮细胞氧化应激模型中,RT-qPCR和Western blot显示AKT1 mRNA及蛋白表达水平高于未用H2O2处理的对照组,差异有统计学意义(P<0.05),(图1)。

图 1.

图 1

AKT1 expression levels were significantly upregulated in a model of oxidative stress in lens epithelial cells

AKT1在晶状体上皮细胞氧化应激模型中的表达水平

A, RT-qPCR is performed to determine changes in transcription levels of AKT1 in the lens epithelial cell oxidative stress model; B, Western blot is performed to determine changes in protein levels of AKT1 in the lens epithelial cell oxidative stress model. *** P < 0.001, vs. control group. n = 3.

2.3. 敲低AKT1能够抑制H2O2诱导的晶状体上皮细胞氧化应激反应并减少凋亡

图2。RT-qPCR和Western blot显示,与si-NC组相比,3组si-AKT1组的AKT1表达均降低(P均<0.05),选择降低最明显的si-AKT1-2组和si-AKT1-3组进行后续实验。相较于si-NC组,2个si-AKT1组ROS和MDA水平下降,SOD和GSH水平升高,细胞凋亡减少,Bcl-2上调、Bax下调,差异有统计学意义(P<0.05)。

图 2.

图 2

Knockdown of AKT1 inhibits H2O2-induced oxidative stress and apoptosis in lens epithelial cells

敲低AKT1能够抑制H2O2诱导的晶状体上皮细胞的氧化应激反应和凋亡

A, RT-qPCR assay is performed to determine the knockdown efficiency of AKT1; B, Western blot is performed to determine the knockdown efficiency of AKT1; C, oxidative stress assay kit is used to determine the effect of AKT1 knockdown on the oxidative stress response of lens epithelial cells; D, flow cytometry is performed to determine the effect of AKT1 knockdown on the apoptosis level of lens epithelial cells; E, Western blot is performed to determine the effect ofAKT1 knockdown on the expression level of apoptosis-related molecules in lens epithelial cells. *** P < 0.001, vs. control + si-NC group; # P < 0.05, ## P < 0.05, ### P < 0.001, vs. H2O2 + si-NC group. n = 3.

2.4. 敲低AKT1能够抑制AMPK通路活性

结果表明,与Control+si-NC组相比,H2O2+si-NC、H2O2+si-AKT1-2和H2O2+si-AKT1-3组细胞中AMPK表达水平无明显变化,而p-AMPK表达水平降低(图3)。

图 3.

图 3

Using Western blot assay to determine the effect of AKT1 knockdown on AMPK pathway activity

Western blot实验检测敲低AKT1AMPK通路活性的影响

* P < 0.05, ** P < 0.01, *** P < 0.001, vs. control + si-NC group; # P < 0.05, ## P < 0.05, ### P < 0.001, vs. H2O2 + si-NC group. n = 3.

2.5. AKT1通过影响AMPK活性参与ARC氧化应激

图4。敲低AKT1(si-AKT1-2组)联合AMPK激动剂AICAR干预显示:与H2O2+si-AKT1-2组相比,AICAR组ROS、MDA显著升高,SOD、GSH降低,流式检测凋亡率升高,Bcl-2下调、Bax上调,差异有统计学意义(P<0.05)。

图 4.

图 4

AKT1 is involved in ARC oxidative stress and apoptosis by affecting AMPK activity

AKT1通过影响AMPK活性参与ARC氧化应激和细胞凋亡

A, Oxidative stress kit to detect the changes of ROS, SOD, MDA and GSH content in the cells of each group; B, flow cytometry to detect the apoptosis level in the cells of each group; C, Western blot to detect the changes of apoptosis-related molecules Bcl-2 and Bax expression in the cells of each group. ** P < 0.01, *** P < 0.001, vs. control + si-NC group; # P < 0.05, ## P < 0.05, ### P < 0.001, vs. H2O2 + si-NC group. n = 3.

3. 讨论

对于ARC患者,目前最常用的有效治疗方法仍然是手术,但由于患者数量众多,区域间眼科医疗资源分配不均以及术后调节功能困难和后发性白内障等因素存在,手术医药支出所带来社会经济负担必将长期存在[7]。因此,为了寻找更具经济性和易于推广的非手术治疗方法,我们需要深入研究ARC的相关病理学机制。研究表明,ARCs的主要病因包括人类晶状体上皮细胞(HLECs)过度凋亡、ROS产生和α-晶体伴侣功能障碍[8-9]。眼部的主要ROS是超氧阴离子(O2)、H2O2和羟基自由基(OH),它们会破坏晶状体中的DNA和蛋白质,导致细胞凋亡[10-11]。由此可见,靶向氧化应激中ROS产生是治疗ARC的重要研究方向。AMPK是一种重要的蛋白激酶,由蛋白激酶B1(Liver kinase B1,LKB1)激活,能够响应细胞的能量状态和代谢状态,调节细胞的代谢和生长。AMPK信号通路能够参与细胞代谢的调节且与细胞的能量代谢密切相关[12]。近年来,越来越多的研究证实AMPK在白内障等相关眼部疾病的发生中发挥重要作用[13-15]AKT参与多种细胞内物质代谢,广泛存在于多种细胞类型中。其主要通过对特定底物进行磷酸化,通过调节一系列信号通路影响细胞的代谢、转录及凋亡等过程。激活的AKT参与细胞凋亡、葡萄糖代谢和蛋白质合成过程,从而调节细胞的存活和增殖[16-18]。结合生物信息学GENENIA分析结果,本研究推测AKT1可能通过AMPK通路调控ARC氧化应激反应,因此,本研究首先通过Western blot实验检测了敲低AKT1AMPK活性的影响。结果显示,在富集于AMPK通路的差异基因中,AKT1的表达水平在ARC样本中上调。这一发现引起了我们的关注,因为AKT1不仅参与细胞存活信号传导,还与氧化应激反应有着重要联系。GENENIA分析结果显示,AKT1主要影响内源性细胞凋亡信号通路和氧化应激反应。这表明,AKT1可能通过调节这些关键路径来介导晶状体上皮细胞对环境压力的响应,从而影响其功能及存活。因此,我们选择将AKT1作为ARC的重要致病基因进行后续深入研究。

虽然ARC的发病机制目前仍不清楚,但普遍认为ROS,尤其是H2O2是导致上皮细胞损伤和蛋白质降解的主要原因[19-21]。研究表明[22],随着年龄增长,谷胱甘肽和维生素C等抗氧化剂会耗尽,从而使眼睛更容易受到氧化应激引起的各种问题的影响。晶状体持续暴露于紫外线辐射和其他外源性因素(如环境污染和吸烟)会导致ROS的产生,这些ROS会非特异性地与晶状体蛋白和脂质发生反应,导致脂质过氧化和晶状体细胞膜的失控损伤[23]。由此可见,抗氧化应激反应是白内障的重要治疗策略。AKT1通过调节线粒体功能在氧化应激中起着关键作用,线粒体是ROS的主要产生源,氧化应激通常伴随着线粒体功能障碍,AKT1能够通过磷酸化一系列分子,调节线粒体的形态、功能及自噬作用,从而调控ROS的产生和清除[24]AKT1还能够通过抑制促凋亡因子,保持线粒体功能的稳定,避免线粒体损伤引发的细胞死亡[25]。实验结果显示,敲低AKT1能够有效抑制ROSMDA水平的升高,同时上调SODGSH的水平。这一发现表明,AKT1在晶状体上皮细胞中可能发挥着重要的保护作用,通过调节这些关键抗氧化分子来减轻细胞受到的氧化损伤。研究表明[26],在氧化应激条件下,AKT1通过磷酸化FOXO家族成员(如FOXO1、FOXO3),抑制其转录活性,防止这些转录因子诱导促凋亡或抗氧化基因的表达,而FOXO3在氧化应激下通常会启动SOD,有助于清除ROS[27-28]。而MDA作为脂质过氧化的产物,其浓度升高通常与膜损伤密切相关。因此,在本研究中观察到这两者含量降低,可以推测敲低AKT1可能通过抑制自由基生成或促进清除机制来保护晶状体上皮细胞。此外,SODGSH作为重要的抗氧化因子,它们水平的提高进一步支持了这一结论尽管以上结果提示了AKT1在调控晶状体上皮细胞对抗氧化应激反应中的潜在角色,但目前关于其具体分子机制尚不明确。

生物信息学提示AKT1为富集于AMPK通路中的ARC差异基因,提示AKT1可能通过调控AMPK通路活性发挥作用。AMPK是一种细胞能量传感器,在生理条件下,AMPK在细胞生长、氧化应激、自噬和凋亡等生物学过程中发挥着重要作用[29-30]。研究表明,激活AMPK可通过上调硫氧还蛋白的表达来减轻氧化应激[31]。但是AKT1是否能够通过调控AMPK活性影响晶状体上皮细胞的氧化应激反应尚不明确。为了进一步阐明AKT1影响晶状体上皮细胞氧化应激反应的具体分子机制,本研究首先检测了敲低AKT1AMPK活性的影响,发现敲低AKT1能够抑制AMPK通路活性。接下来,为了证实AKT1是否通过调控AMPK通路发挥作用,本研究在敲低AKT1的同时给予AMPK激动剂干预,发现AMPK激动剂能够拮抗敲低AKT1对H2O2诱导的晶状体上皮细胞氧化应激和凋亡的抑制作用。以往的文献显示[32]AKT1能够通过上游的PI3K信号途径激活哺乳动物雷帕霉素靶蛋白C1(Mammalian target protein c1 of rapamycin, mTORC1),而mTORC1可以通过抑制AMPK的激活,减少AMPK在能量低状态下的反应。因此,AKT1敲低会减弱PI3K/AKT/mTORC1通路的激活,从而减少对AMPK的抑制,导致AMPK活性可能得到一定程度的增强。提示本研究中AKT1AMPK的调控作用可能与mTORC1有关,有待进一步实验进行验证。

综上所述,AKT1在H2O2诱导的晶状体上皮细胞氧化应激模型中的表达水平上调,且敲低AKT1能够抑制该模型的氧化应激反应和凋亡。进一步进行机制学研究发现,AKT1通过激活AMPK通路诱导晶状体上皮细胞发生氧化应激反应,进而促进ACR进展。然而,由于本研究涉及大量指标的比较,可能会出现假阳性结果,因此在没有采用严格的P值调整方法时,本研究结果应仅作为探索性分析;另外,本研究未在实验过程中结合小分子化合物对AKT1的活性进行进一步的验证,这一缺失限制了我们对AKT1功能调节机制的深入理解,并可能影响结果的普遍适用性。因此,后续试验需要进一步对AKT1的小分子抑制剂或激活剂,更全面地评估AKT1/AMPK在白内障患者晶状体上皮细胞氧化应激中的作用。

*    *    *

作者贡献声明 黄艳负责论文构思、数据审编、正式分析、调查研究、研究方法、研究项目管理、验证、初稿写作和审读与编辑写作,吕冰镜负责软件,唐崑源负责可视化,胡柯负责经费获取、提供资源和监督指导。所有作者已经同意将文章提交给本刊,且对将要发表的版本进行最终定稿,并同意对工作的所有方面负责。

Author Contribution  HUANG Yan is responsible for conceptualization, data curation, formal analysis, investigation, methodology, project administration, validation, writing--original draft, and writing--review and editing. LYU Bingjing is responsible for software. TANG Kunyuan is responsible for visualization. HU Ke is responsible for funding acquisition, resources, and supervision. All authors consented to the submission of the article to the Journal. All authors approved the final version to be published and agreed to take responsibility for all aspects of the work.

利益冲突 所有作者均声明不存在利益冲突

Declaration of Conflicting Interests All authors declare no competing interests.

Funding Statement

国家自然科学基金(No. 82371098)资助

Contributor Information

艳 黄 (Yan HUANG), Email: 2921259@163.com.

柯 胡 (Ke HU), Email: cqhuke@hospital.cqmu.edu.cn.

References

  • 1.LEE BJ, AFSHARI NA Advances in drug therapy and delivery for cataract treatment. Curr Opin Ophthalmol. 2023;34(1):3–8. doi: 10.1097/ICU.0000000000000910. [DOI] [PubMed] [Google Scholar]
  • 2.CHEN YY, CHEN CK, WU TT, et al Attenuation of epithelial-mesenchymal transition via SGLT2 inhibition and diabetic cataract suppression by dapagliflozin nanoparticles treatment. Life Sci. 2023;330:122005. doi: 10.1016/j.lfs.2023.122005. [DOI] [PubMed] [Google Scholar]
  • 3.WU A, ZHANG W, ZHANG G, et al Age-related cataract: GSTP1 ubiquitination and degradation by Parkin inhibits its anti-apoptosis in lens epithelial cells. Biochim Biophys Acta Mol Cell Res. 2023;1870(4):119450. doi: 10.1016/j.bbamcr.2023.119450. [DOI] [PubMed] [Google Scholar]
  • 4.MISHRA D, KASHYAP A, SRIVASTAV T, et al Enzymatic and biochemical properties of lens in age-related cataract versus diabetic cataract: A narrative review. Indian J Ophthalmol. 2023;71(6):2379–2384. doi: 10.4103/ijo.IJO_1784_22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.邓斌, 曾春梅, 白莹, 等 年龄相关性白内障患者血清和房水Hcy、25-(OH)-D、HMGB1与氧化应激指标和炎症细胞因子的相关性分析. 现代生物医学进展. 2024;24(18):3585–3589. doi: 10.13241/j.cnki.pmb.2024.18.035. [DOI] [Google Scholar]
  • 6.FAN Z, ZHU J Secretion of related factors and AMPK/PGC-1 α signal pathway by alveolar macrophages in viral acute lung injury. Cell Mol Biol (Noisy-le-grand) 2023;69(7):66–70. doi: 10.14715/cmb/2023.69.7.11. [DOI] [PubMed] [Google Scholar]
  • 7.DE BRUYNE S, VAN SCHIE L, HIMPE J, et al A Potential Role for Fructosamine-3-Kinase in Cataract Treatment. Int J Mol Sci. 2021;22(8):3841. doi: 10.3390/ijms22083841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.YANG H, CUI Y, TANG Y, et al Cytoprotective role of humanin in lens epithelial cell oxidative stress-induced injury. Mol Med Rep. 2020;22(2):1467–1479. doi: 10.3892/mmr.2020.11202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.CHEN S, ZHAO W, CHEN R, et al. FYCO1 regulates autophagy and senescence via PAK1/p21 in cataract. Arch Biochem Biophys. 2024: 110180. doi: 10.1016/j.abb.2024.110180.
  • 10.LIN P, XU J, YANG F, et al Elevated concentrations of amyloid‐β oligomers and their proapoptotic effects on age‐related cataract. The FASEB Journal. 2024;38(17):e23861. doi: 10.1096/fj.202301281RR. [DOI] [PubMed] [Google Scholar]
  • 11.WANG L, LOU W, ZHANG Y, et al HO-1–Mediated Autophagic Restoration Protects Lens Epithelial Cells Against Oxidative Stress and Cellular Senescence. Invest Ophthalmol Vis Sci. 2023;64(15):6–6. doi: 10.1167/iovs.64.15.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.龙彬梅, 黄超林 子痫前期患者血清腺苷活化蛋白激酶水平与可溶性血管内皮生长因子受体-1及氧化应激的相关性. 成都医学院学报. 2024;19(2):318–321. doi: 10.3969/j.issn.1674-2257.2024.02.026. [DOI] [Google Scholar]
  • 13.CHEN M, ZHANG C, ZHOU N, et al Metformin alleviates oxidative stress-induced senescence of human lens epithelial cells via AMPK activation and autophagic flux restoration. J Cell Mol Med. 2021;25(17):8376–8389. doi: 10.1111/jcmm.16797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.LI J, SUN Q, QIU X, et al Downregulation of AMPK dependent FOXO3 and TFEB involves in the inhibition of autophagy in diabetic cataract. Curr Eye Res. 2022;47(4):555–564. doi: 10.1080/02713683.2021.2009516. [DOI] [PubMed] [Google Scholar]
  • 15.SHUKAL DK, MALAVIYA PB, SHARMA T. Role of the AMPK signalling pathway in the aetiopathogenesis of ocular diseases. Hum Exp Toxicol, 2022, 41: 9603271211063165. doi: 10.1177/09603271211063165.
  • 16.YANG M, LIU H, QIU GP, et al Silencing Akt1 enhances the resistance of prostate cancer cells to starvation and inhibits starvation-induced lung metastasis through epithelial-mesenchymal transition in prostate cancer. Med Oncol. 2021;39(1):8. doi: 10.1007/s12032-021-01600-z. [DOI] [PubMed] [Google Scholar]
  • 17.DING H, YAN L, WANG Y, et al Astaxanthin attenuates cigarette smoke-induced small airway remodeling via the AKT1 signaling pathway. Respir Res. 2024;25(1):148. doi: 10.1186/s12931-024-02768-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.YANG T, PAN Q, YUE R, et al Daphnetin alleviates silica-induced pulmonary inflammation and fibrosis by regulating the PI3K/AKT1 signaling pathway in mice. Int Immunopharmacol. 2024;133:112004. doi: 10.1016/j.intimp.2024.112004. [DOI] [PubMed] [Google Scholar]
  • 19.XU C, XU J, ZHANG W, et al Expression of miR-210-3p in the aqueous humor of patients with age-related cataracts and its effect on human lens epithelial cell injury induced by hydrogen peroxide. Arq Bras Oftalmol. 2023;87(5):e2022–0274. doi: 10.5935/0004-2749.2022-0274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.LIM JC, CABALLERO ARREDONDO M, BRAAKHUIS AJ, et al Vitamin C and the lens: new insights into delaying the onset of cataract. Nutrients. 2020;12(10):3142. doi: 10.3390/nu12103142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.WANG Z, SU D, SUN Z, et al MDM2 phosphorylation mediates H2O2-induced lens epithelial cells apoptosis and age-related cataract. Biochem Biophys Res Commun. 2020;528(1):112–119. doi: 10.1016/j.bbrc.2020.05.060. [DOI] [PubMed] [Google Scholar]
  • 22.LIM JC, GREY AC, ZAHRAEI A, et al Age-dependent changes in glutathione metabolism pathways in the lens: New insights into therapeutic strategies to prevent cataract formation—A review. Clin Exp Ophthalmol. 2020;48:1031–1042. doi: 10.1111/ceo.13801. [DOI] [PubMed] [Google Scholar]
  • 23.CROOKE A, HUETE‐TORAL F, COLLIGRIS B, et al The role and therapeutic potential of melatonin in age‐related ocular diseases. J Pineal Res. 2017;63(2):e12430. doi: 10.2147/DDDT.S471525. [DOI] [PubMed] [Google Scholar]
  • 24.XIAO HX, SONG B, LI Q, et al Paraquat mediates BV-2 microglia activation by raising intracellular ROS and inhibiting Akt1 phosphorylation. Toxicol Lett. 2022;355:116–126. doi: 10.1016/j.toxlet.2021.11.017. [DOI] [PubMed] [Google Scholar]
  • 25.CHEN YH, TA AP, CHEN Y, et al Dual roles of myocardial mitochondrial AKT on diabetic cardiomyopathy and whole body metabolism. Cardiovasc Diabetol. 2023;22(1):294. doi: 10.1186/s12933-023-02020-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.LI TC, WU CW, LI CI, et al Interactions among IGF-1, AKT2, FOXO1, and FOXO3 variations and between genes and physical activities on physical performance in community-dwelling elders. PLoS One. 2020;15(9):e0239530. doi: 10.1371/journal.pone.0239530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.ZHOU J, LI XY, LIU YJ, et al Full-coverage regulations of autophagy by ROS: from induction to maturation. Autophagy. 2022;18(6):1240–1255. doi: 10.1080/15548627.2021.1984656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.XIONG QW, JIANG K, SHEN XW, et al The requirement of the mitochondrial protein NDUFS8 for angiogenesis. Cell Death Dis. 2024;15(4):253. doi: 10.1038/s41419-024-06636-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.CHHUNCHHA B, KUBO E, SINGH D P Obligatory role of AMPK activation and antioxidant defense pathway in the regulatory effects of metformin on cellular protection and prevention of lens opacity. Cells. 2022;11(19):3021. doi: 10.3390/cells11193021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.胡莹莹, 丁珊珊, 林雪娟, 等 促卵合剂调控AMPK/mTOR/HIF-1/VEGF通路改善卵泡发育不良大鼠氧化应激及凋亡的作用机制. 中国实验方剂学杂志. 2024;30(16):76–84. doi: 10.13422/j.cnki.syfjx.20240436. [DOI] [Google Scholar]
  • 31.JIANG H, SONG D Z, ZHOU X, et al Maresin1 ameliorates MSU crystal-induced inflammation by upregulating Prdx5 expression. Mol Med. 2023;29(1):158. doi: 10.1186/s10020-023-00756-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.JIANG Y, ZHAO X, CHEN J, et al. PM2 5 induces cardiac malformations via PI3K/akt2/mTORC1 signaling pathway in zebrafish larvae. Environ Pollut. 2023;323:121306. doi: 10.1016/j.envpol.2023.121306. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Sichuan University (Medical Sciences) are provided here courtesy of Editorial Board of Journal of Sichuan University (Medical Sciences)

RESOURCES