Abstract
1. Changes in extracellular K+ concentration (Δ[K]e), dorsal root potentials (DRPs) and single unit activity were studied in the frog spinal cord in response to stimulation of the skin of the hindlimb by touch, pressure, hot water (heat), single electrical pulses and to stimulation of the ventrolateral columns (LC).
2. Single electrical pulses, various types of adequate stimulation applied to the skin of the hind limb for 1-2 s as well as single volleys of LC led to a Δ[K]e of up to 0.2 mmol.l-1. Stimuli which evoked larger Δ[K]e also produced larger DRPs in the same frog preparation.
3. The briefest heat stimuli, which lasted about 1-2 s, led to more prolonged activity in dorsal horn interneurones than did a single volley or a single tactile stimulus and the Δ[K]e were longer and larger and had a slower rise time.
4. The `slow' second component of dorsal root depolarization (presumably mediated by K+) was observed after electrical and heat stimulation of the skin on the hind limb corresponding to the time course of Δ[K]e.
5. The maximum Δ[K]e induced by nociceptive stimulation occurred in the grey matter of the dorsal horn at a depth of 300-600 μm from the dorsal surface. The maximum response to single stimuli applied to the skin occurred at a depth of 400-800 μm, while that evoked by LC stimulation in the ventral horn at a depth of 1000-1400 μm.
6. Repetitive and more prolonged nociceptive stimulation (5-20 s) produced a Δ[K]e of up to 1 mmol.l-1. The Δ[K]e in response to repetitive tactile stimulation does not exceed 0.2 mmol.l-1. Repetitive stimulation (100 Hz) of LC fibres led to an increase in [K]e of up to 9-10 mmol.l-1 in the ventral horn; this level was similar to that achieved in the intermediate region by electrical repetitive stimulation of the skin (100 Hz). Tetanic stimulation of the ventral root led to a Δ[K]e of only about 0.05 mmol.l-1 at a depth of 500-700 μm and no measurable Δ[K]e within the ventral horn.
7. Spontaneous Δ[K]e associated with spontaneous DRPs and VRPs were observed during the decay phase of Δ[K]e at various intervals from several seconds to one minute after nociceptive or electrical stimulation of the skin, suggesting the occurrence of a longlasting increase in excitability.
8. The depolarization of dorsal root fibres evoked by nociceptive stimulation, tetanic stimulation of the LC and single or tetanic stimulation of the skin was followed by a dorsal root hyperpolarization. Its size, as well as that of Δ[K]e, was dependent on the frequency and duration of stimulation and its time course correlated with the dissipation of Δ[K]e when stimulation was discontinued.
9. It is suggested that the extracellular K+ accumulation could, under physiological conditions, contribute to the modulation of spinal cord transmission, acting both pre-and post-synaptically. Low levels of increased [K]e were associated with facilitation of impulse transmission while higher increases could result in its inhibition.
Full text
PDF















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barker J. L., Nicoll R. A., Padjen A. Studies on convulsants in the isolated frog spinal cord. II. Effects on root potentials. J Physiol. 1975 Mar;245(3):537–548. doi: 10.1113/jphysiol.1975.sp010860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker J. L., Nicoll R. A. The pharmacology and ionic dependency of amino acid responses in the frog spinal cord. J Physiol. 1973 Jan;228(2):259–277. doi: 10.1113/jphysiol.1973.sp010085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barron D. H., Matthews B. H. The interpretation of potential changes in the spinal cord. J Physiol. 1938 Apr 14;92(3):276–321. doi: 10.1113/jphysiol.1938.sp003603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cervero F., Iggo A., Molony V. An electrophysiological study of neurones in the Substantia Gelatinosa Rolandi of the cat's spinal cord. Q J Exp Physiol Cogn Med Sci. 1979 Oct;64(4):297–314. doi: 10.1113/expphysiol.1979.sp002484. [DOI] [PubMed] [Google Scholar]
- Corvaja N., Grofová I. The medial region of toad ventral horn. An electron microscopic study of normal and degenerating terminals of propriospinal and supraspinal origin. Arch Ital Biol. 1977 Oct;115(4):263–293. [PubMed] [Google Scholar]
- Cruce W. L. A supraspinal monosynaptic input to hindlimb motoneurons in lumbar spinal cord of the frog, Rana catesbiana. J Neurophysiol. 1974 Jul;37(4):691–704. doi: 10.1152/jn.1974.37.4.691. [DOI] [PubMed] [Google Scholar]
- Czéh G. Inhibition of the monosynaptic responses in frog spinal motoneurons. Neuroscience. 1979;4(7):951–964. doi: 10.1016/0306-4522(79)90178-7. [DOI] [PubMed] [Google Scholar]
- Czéh G., Syková E., Vyklický L. Neurones activated from nociceptors in the spinal cord of the frog. Neurosci Lett. 1980 Mar;16(3):257–262. doi: 10.1016/0304-3940(80)90007-5. [DOI] [PubMed] [Google Scholar]
- Davidoff R. A., Hackman J. C. Hyperpolarization of frog primary afferent fibres caused by activation of a sodium pump. J Physiol. 1980 May;302:297–309. doi: 10.1113/jphysiol.1980.sp013243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davidoff R. A., Hackman J. C., Osorio I. Amino acid antagonists do not block the depolarizing effects of potassium ions on frog primary afferents. Neuroscience. 1980;5(1):117–126. doi: 10.1016/0306-4522(80)90077-9. [DOI] [PubMed] [Google Scholar]
- Davidoff R. A. The effects of bicuculline on the isolated spinal cord of the frog. Exp Neurol. 1972 Apr;35(1):179–193. doi: 10.1016/0014-4886(72)90068-4. [DOI] [PubMed] [Google Scholar]
- ECCLES J. C., ECCLES R. M., MAGNI F. Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys. J Physiol. 1961 Nov;159:147–166. doi: 10.1113/jphysiol.1961.sp006798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hosli L., Hosli E. Autoradiographic localization of the uptake of glycine in cultures of rat medulla oblongata. Brain Res. 1972 Oct 27;45(2):612–616. doi: 10.1016/0006-8993(72)90493-3. [DOI] [PubMed] [Google Scholar]
- Krnjević K., Morris M. E. Extracellular K + activity and slow potential changes in spinal cord and medulla. Can J Physiol Pharmacol. 1972 Dec;50(12):1214–1217. doi: 10.1139/y72-177. [DOI] [PubMed] [Google Scholar]
- Krnjević K., Morris M. E. Factors determining the decay of K+ potentials and focal potentials in the central nervous system. Can J Physiol Pharmacol. 1975 Oct;53(5):923–934. doi: 10.1139/y75-126. [DOI] [PubMed] [Google Scholar]
- Krív N., Syková E., Vyklický L. Extracellular potassium changes in the spinal cord of the cat and their relation to slow potentials, active transport and impulse transmission. J Physiol. 1975 Jul;249(1):167–182. doi: 10.1113/jphysiol.1975.sp011009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kríz N., Syková E., Ujec E., Vyklický L. Changes of extracellular potassium concentration induced by neuronal activity in the sinal cord of the cat. J Physiol. 1974 Apr;238(1):1–15. doi: 10.1113/jphysiol.1974.sp010507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy R. A. The role of GABA in primary afferent depolarization. Prog Neurobiol. 1977;9(4):211–267. doi: 10.1016/0301-0082(77)90002-8. [DOI] [PubMed] [Google Scholar]
- Lothman E. W., Somjen G. G. Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord. J Physiol. 1975 Oct;252(1):115–136. doi: 10.1113/jphysiol.1975.sp011137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melzack R., Wall P. D. Pain mechanisms: a new theory. Science. 1965 Nov 19;150(3699):971–979. doi: 10.1126/science.150.3699.971. [DOI] [PubMed] [Google Scholar]
- Nicholson C., Phillips J. M., Gardner-Medwin A. R. Diffusion from an iontophoretic point source in the brain: role of tortuosity and volume fraction. Brain Res. 1979 Jun 29;169(3):580–584. doi: 10.1016/0006-8993(79)90408-6. [DOI] [PubMed] [Google Scholar]
- Nicoll R. A. Dorsal root potentials and changes in extracellular potassium in the spinal cord of the frog. J Physiol. 1979 May;290(2):113–127. doi: 10.1113/jphysiol.1979.sp012763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt R. F. Presynaptic inhibition in the vertebrate central nervous system. Ergeb Physiol. 1971;63:20–101. doi: 10.1007/BFb0047741. [DOI] [PubMed] [Google Scholar]
- Somjen G. G., Lothman E. W. Potassium, sustained focal potential shifts, and dorsal root potentials of the mammalian spinal cord. Brain Res. 1974 Mar 29;69(1):153–157. doi: 10.1016/0006-8993(74)90382-5. [DOI] [PubMed] [Google Scholar]
- Syková E., Orkand R. K. Extracellular potassium accumulation and transmission in frog spinal cord. Neuroscience. 1980;5(8):1421–1428. doi: 10.1016/0306-4522(80)90003-2. [DOI] [PubMed] [Google Scholar]
- Syková E., Rothenberg S., Krekule I. Changes of extracellular potassium concentration during spontaneous activity in the mesencephalic reticular formation of the rat. Brain Res. 1974 Oct 18;79(2):333–337. doi: 10.1016/0006-8993(74)90428-4. [DOI] [PubMed] [Google Scholar]
- Syková E., Shirayev B., Kríz N., Vyklický L. Accumulation of extracellular potassium in the spinal cord of frog. Brain Res. 1976 Apr 23;106(2):413–417. doi: 10.1016/0006-8993(76)91039-8. [DOI] [PubMed] [Google Scholar]
- Syková E., Vyklický L. Effects of picrotoxin on potassium accumulation and dorsal root potentials in the frog spinal cord. Neuroscience. 1978;3(11):1061–1067. doi: 10.1016/0306-4522(78)90123-9. [DOI] [PubMed] [Google Scholar]
- Syková E., Vyklický L. Isolated spinal cord of the frog--an in vitro model for the study of neuronal mechanisms of pain. Physiol Bohemoslov. 1979;28(3):227–230. [PubMed] [Google Scholar]
- Székely G. The morphology of motoneurons and dorsal root fibers in the frog's spinal cord. Brain Res. 1976 Feb 20;103(2):275–290. doi: 10.1016/0006-8993(76)90799-x. [DOI] [PubMed] [Google Scholar]
- Ujec E., Beránek R. Differential high-impedance DC amplifier with negative input capacity. Physiol Bohemoslov. 1967;16(1):89–96. [PubMed] [Google Scholar]
- Vyklický L., Sykova E. The effects of increased extracellular potassium in the isolated spinal cord on the flexor reflex of the frog. Neurosci Lett. 1980 Sep;19(2):203–207. doi: 10.1016/0304-3940(80)90195-0. [DOI] [PubMed] [Google Scholar]
- Vyklický L., Syková E., Mellerová B. Depolarization of primary afferents in the frog spinal cord under high Mg2+ concentrations. Brain Res. 1976 Nov 19;117(1):153–156. doi: 10.1016/0006-8993(76)90566-7. [DOI] [PubMed] [Google Scholar]
- Wall P. D. The gate control theory of pain mechanisms. A re-examination and re-statement. Brain. 1978 Mar;101(1):1–18. doi: 10.1093/brain/101.1.1. [DOI] [PubMed] [Google Scholar]
- ten Bruggencate G., Lux H. D., Liebl L. Possible relationships between extracellular potassium activity and presynaptic inhibition in the spinal cord of the cat. Pflugers Arch. 1974;349(4):301–317. doi: 10.1007/BF00588416. [DOI] [PubMed] [Google Scholar]
