Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1981;320:113–125. doi: 10.1113/jphysiol.1981.sp013938

The location of carbonic anhydrase in relation to the blood-brain barrier at the medullary chemoreceptors of the cat.

M A Hanson, P C Nye, R W Torrance
PMCID: PMC1244036  PMID: 6798204

Abstract

1. The role of carbonic anhydrase near the medullary chemoreceptors has been investigated in the cat. Vertebral artery injections have been used to cause abrupt changes in respiration as a result of changes in the activity of medullary chemoreceptors. 2. Injections of 100% CO2-saline were used to stimulate respiration and of Tris or alkalinized albumin solution to cause a reduction in respiration. 3. The injections gave rapid effects. We studied the effect on these of benzolamide (1-4 mg/kg i.v.) a carbonic anhydrase inhibitor which does not easily cross the blood-brain barrier and acetazolamide (50 mg/kg i.v.) an inhibitor which crosses the barrier more easily. 4. The effects of Tris were much reduced after benzolamide. Even addition of benzolamide to the injected Tris or albumin was sufficient to reduce their effects. 5. The effects of CO2-saline were reduced only after acetazolamide i.v. Whereas addition of carbonic anhydrase to injected Tris potentiated the effects on respiration, after acetazolamide this potentiation was much less marked. 6. It is concluded that carbonic anhydrase acts in the region of the medullary chemoreceptors at two sites: (a) outside the blood-brain barrier, probably at the luminal surface of the capillary endothelium, where it may act on plasma buffers, and (b) inside the barrier, in association with the chemoreceptors, where it may accelerate CO2/pH equilibration.

Full text

PDF
113

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Black A. M., McCloskey D. I., Torrance R. W. The responses of carotid body chemoreceptors in the cat to sudden changes of hypercapnic and hypoxic stimuli. Respir Physiol. 1971 Oct;13(1):36–49. doi: 10.1016/0034-5687(71)90063-6. [DOI] [PubMed] [Google Scholar]
  2. Black A. M., Torrance R. W. Respiratory oscillations in chemoreceptor discharge in the control of breathing. Respir Physiol. 1971 Nov;13(2):221–237. doi: 10.1016/0034-5687(71)90092-2. [DOI] [PubMed] [Google Scholar]
  3. Booth V. H. Carbonic anhydrase activity inside corpuscles. Enzyme-substrate accessibility factors. J Physiol. 1938 Jul 14;93(2):117–128. doi: 10.1113/jphysiol.1938.sp003630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brightman M. W., Reese T. S. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969 Mar;40(3):648–677. doi: 10.1083/jcb.40.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crandall E. D., Bidani A., Forster R. E. Postcapillary changes in blood pH in vivo during carbonic anhydrase inhibition. J Appl Physiol Respir Environ Exerc Physiol. 1977 Oct;43(4):582–590. doi: 10.1152/jappl.1977.43.4.582. [DOI] [PubMed] [Google Scholar]
  6. Crandall E. D., O'Brasky J. E. Direct evidence of participation of rat lung carbonic anhydrase in CO2 reactions. J Clin Invest. 1978 Sep;62(3):618–622. doi: 10.1172/JCI109168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deno N. S., Barlett H. L., Buskirk E. R. Respiratory flow integrator with improved stability. J Appl Physiol Respir Environ Exerc Physiol. 1978 Apr;44(4):619–622. doi: 10.1152/jappl.1978.44.4.619. [DOI] [PubMed] [Google Scholar]
  8. Effros R. M., Weissman M. L. Carbonic anhydrase activity of the cat hind leg. J Appl Physiol Respir Environ Exerc Physiol. 1979 Nov;47(5):1090–1098. doi: 10.1152/jappl.1979.47.5.1090. [DOI] [PubMed] [Google Scholar]
  9. GIACOBINI E. A cytochemical study of the localization of carbonic anhydrase in the nervous system. J Neurochem. 1962 Mar-Apr;9:169–177. doi: 10.1111/j.1471-4159.1962.tb11859.x. [DOI] [PubMed] [Google Scholar]
  10. Gardner W. N. The pattern of breathing following step changes of alveolar partial pressures of carbon dioxide and oxygen in man. J Physiol. 1980 Mar;300:55–73. doi: 10.1113/jphysiol.1980.sp013151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gray B. A. The rate of approach to equilibrium in uncatalyzed CO2 hydration reactions: the theoretical effect of buffering capacity. Respir Physiol. 1971 Jan;11(2):223–234. doi: 10.1016/0034-5687(71)90026-0. [DOI] [PubMed] [Google Scholar]
  12. Hanson M. A., Nye P. C., Torrance R. W. Alteration of respiratory timing by abrupt decreases in carotid body activity [proceedings]. J Physiol. 1978 May;278:17P–17P. [PubMed] [Google Scholar]
  13. Hanson M. A., Nye P. C., Torrance R. W. Carbonic anhydrase in medulla oblongata of the cat [proceedings]. J Physiol. 1979 Apr;289:40P–41P. [PubMed] [Google Scholar]
  14. Hanson M. A., Nye P. C., Torrance R. W. Pulmonary capillary luminal surface carbonic anhydrase [proceedings]. J Physiol. 1979 Aug;293:25P–25P. [PubMed] [Google Scholar]
  15. Holder L. B., Hayes S. L. Diffusion of sulfonamides in aqueous buffers and into red cells. Mol Pharmacol. 1965 Nov;1(3):266–279. [PubMed] [Google Scholar]
  16. Klocke R. A. Equilibrium of CO2 reactions in the pulmonary capillary. J Appl Physiol Respir Environ Exerc Physiol. 1980 Jun;48(6):972–976. doi: 10.1152/jappl.1980.48.6.972. [DOI] [PubMed] [Google Scholar]
  17. LOESCHCKE H. H., KOEPCHEN H. P., GERTZ K. H. Uber den Einfluss von Wasserstoffionenkonzentration und CO2-Druck im Liquor cerebrospinalis auf die Atmung. Pflugers Arch. 1958;266(6):569–585. doi: 10.1007/BF00363036. [DOI] [PubMed] [Google Scholar]
  18. Maren T. H. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967 Oct;47(4):595–781. doi: 10.1152/physrev.1967.47.4.595. [DOI] [PubMed] [Google Scholar]
  19. ROTH L. J., SCHOOLAR J. C., BARLOW C. F. Sulfur-35 labeled acetazolamide in cat brain. J Pharmacol Exp Ther. 1959 Feb;125(2):128–136. [PubMed] [Google Scholar]
  20. Ridderstråle Y. Observations on the localization of carbonic anhydrase in muscle. Acta Physiol Scand. 1979 Jun;106(2):239–240. doi: 10.1111/j.1748-1716.1979.tb06393.x. [DOI] [PubMed] [Google Scholar]
  21. Travis D. M. Molecular CO 2 is inert on carotid chemoreceptor: demonstration by inhibition of carbonic anhydrase. J Pharmacol Exp Ther. 1971 Sep;178(3):529–540. [PubMed] [Google Scholar]
  22. Travis D. M., Wiley C., Maren T. H. Respiration during chronic inhibition of renal carbonic anhydrase: further observations on pharmacology of 2-benzenesulfonamido-1,3, 4-thiadiazole-5-sulfonamide (CL 11,366), acetazolamide and methazolamide. J Pharmacol Exp Ther. 1966 Mar;151(3):464–481. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES