Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1981;320:347–361. doi: 10.1113/jphysiol.1981.sp013954

Effects of histamine, high potassium and carbachol on 42K efflux from longitudinal muscle of guinea-pig intestine

T B Bolton 1, J P Clark 1
PMCID: PMC1244052  PMID: 7320942

Abstract

1. Shortening and rate of loss of 42K were studied in strips of longitudinal muscle taken from guinea-pig ileum.

2. Carbachol, histamine and raising the external potassium concentration, [K+]o, to 120 mm in the presence of atropine caused equal maximal shortenings of the muscle, but unequal maximal increases in 42K efflux: maximal 42K effluxes obtainable in response to raised [K+]o and histamine were about ⅔ and ⅓ respectively of the maximal efflux in response to carbachol. In the absence of atropine the increase in 42K efflux produced by 120 mm-[K+]o was about 50% larger, probably because of the release of acetylcholine from nerve endings in the tissue.

3. If inhibitors of histamine metabolism were applied, or a H2-receptor blocker (cimetidine), the maximum 42K efflux produced by histamine was not increased. An analogue of histamine reputed to resist metabolic degradation did not produce a larger increase in 42K efflux than histamine. The smaller maximal effect of histamine on 42K efflux than carbachol may be because it can open fewer ion channels in the smooth muscle membrane.

4. The ratio of the concentrations producing 50% maximal shortening and 50% maximal 42K efflux was about 1:1.3 for raised [K+]o but about 1:20 for histamine and carbachol. Depolarization by raising [K+]o appears to be less effective in causing tension development than similar depolarizations produced by carbachol or histamine.

5. The relative effects of carbachol, histamine and raised [K+]o were discussed in the light of their similar depolarizing actions. Increases in 42K efflux did not appear to be caused primarily either by contraction or by depolarization of the muscle. Access of the stimulant to cells and receptors other than those which are superficially situated was suggested as being an important factor in deciding the smaller increase in 42K efflux seen with some stimulants. Histamine receptors may be fewer in number than muscarinic receptors and less able in their activated form to open channels through which potassium ions can escape.

Full text

PDF
347

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARUNLAKSHANA O., MONGAR J. L., SCHILD H. O. Potentiation of pharmacological effects of histamine by histaminase inhibitors. J Physiol. 1954 Jan;123(1):32–54. doi: 10.1113/jphysiol.1954.sp005032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ambache N., Killick S. W., Zar M. A. Antagonism by burimamide of inhibitions induced by histamine in plexus-containing longitudinal muscle preparations from guinea-pig ileum. Br J Pharmacol. 1973 Jun;48(2):362P–363P. [PMC free article] [PubMed] [Google Scholar]
  3. Ambache N., Zar M. A. An inhibitory action of histamine on the guinea-pig ileum. Br J Pharmacol. 1970 Jan;38(1):229–240. doi: 10.1111/j.1476-5381.1970.tb10352.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BANERJEE A. K., LEWIS J. J. EFFECTS OF SMOOTH MUSCLE STIMULANTS AND THEIR ANATAGONISTS UPON POTASSIUM ION UPTAKE AND RELEASE IN STRIPS OF GUINEA-PIG ILEUM. J Pharm Pharmacol. 1964 Feb;16:134–136. doi: 10.1111/j.2042-7158.1964.tb07436.x. [DOI] [PubMed] [Google Scholar]
  5. BORN G. V., BULBRING E. The movement of potassium between smooth muscle and the surrounding fluid. J Physiol. 1956 Mar 28;131(3):690–703. doi: 10.1113/jphysiol.1956.sp005494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BULBRING E. Changes in configuration of spontaneously discharged spike potentials from smooth muscle of the guinea-pig's taenia coli; the effect of electrotonic currents and of adrenaline, acetylcholine and histamine. J Physiol. 1957 Feb 15;135(2):412–425. doi: 10.1113/jphysiol.1957.sp005720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. BULBRING E. Correlation between membrane potential, spike discharge and tension in smooth muscle. J Physiol. 1955 Apr 28;128(1):200–221. doi: 10.1113/jphysiol.1955.sp005299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. BULBRING E. Membrane potentials of smooth muscle fibres of the taenia coli of the guinea-pig. J Physiol. 1954 Aug 27;125(2):302–315. doi: 10.1113/jphysiol.1954.sp005159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Banerjee A. K. The influence of drugs upon 42 K + fluxes in guinea-pig ileum in vitro. Arch Int Pharmacodyn Ther. 1972;198(1):173–186. [PubMed] [Google Scholar]
  10. Beaven M. A., Shaff R. E. Inhibition of histamine methylation in vivo by the dimaprit analog, SKF Compound 91488. Agents Actions. 1979 Dec;9(5-6):455–460. doi: 10.1007/BF01968110. [DOI] [PubMed] [Google Scholar]
  11. Bertaccini G., Molina E., Zappia L., Zseli J. Histamine receptors in the guinea pig ileum. Naunyn Schmiedebergs Arch Pharmacol. 1979 Oct;309(1):65–68. doi: 10.1007/BF00498757. [DOI] [PubMed] [Google Scholar]
  12. Bolton T. B., Clark J. P. Actions of various muscarinic agonists on membrane potential, potassium efflux, and contraction of longitudinal muscle of guinea-pig intestine. Br J Pharmacol. 1981 Feb;72(2):319–334. doi: 10.1111/j.1476-5381.1981.tb09131.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bolton T. B., Clark J. P., Kitamura K., Lang R. J. Evidence that histamine and carbachol may open the same ion channels in longitudinal smooth muscle of guinea-pig ileum. J Physiol. 1981 Nov;320:363–379. doi: 10.1113/jphysiol.1981.sp013955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bolton T. B. Effects of stimulating the acetylcholine receptor on the current-voltage relationships of the smooth muscle membrane studied by voltage clamp of potential recorded by micro-electrode. J Physiol. 1975 Aug;250(1):175–202. doi: 10.1113/jphysiol.1975.sp011048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Bolton T. B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev. 1979 Jul;59(3):606–718. doi: 10.1152/physrev.1979.59.3.606. [DOI] [PubMed] [Google Scholar]
  16. Bolton T. B. On the nature of the oscillations of the membrane potential (slow waves) produced by acetylcholine or carbachol in intestinal smooth muscle. J Physiol. 1971 Jul;216(2):403–418. doi: 10.1113/jphysiol.1971.sp009532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bolton T. B. The depolarizing action of acetylcholine or carbachol in intestinal smooth muscle. J Physiol. 1972 Feb;220(3):647–671. doi: 10.1113/jphysiol.1972.sp009728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Brading A. F., Sneddon P. Evidence for multiple sources of calcium for activation of the contractile mechanism of guinea-pig taenia coli on stimulation with carbachol. Br J Pharmacol. 1980 Oct;70(2):229–240. doi: 10.1111/j.1476-5381.1980.tb07928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. CSAPO I. A., KURIYAMA H. A. Effects of ions and drugs on cell membrane activity and tension in the postpartum rat myometrium. J Physiol. 1963 Mar;165:575–592. doi: 10.1113/jphysiol.1963.sp007081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Casteels R., Raeymaekers L. The action of acetylcholine and catecholamines on an intracellular calcium store in the smooth muscle cells of the guinea-pig taenia coli. J Physiol. 1979 Sep;294:51–68. doi: 10.1113/jphysiol.1979.sp012914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. DURBIN R. P., JENKINSON D. H. The effect of carbachol on the permeability of depolarized smooth muscle to inorganic ions. J Physiol. 1961 Jun;157:74–89. doi: 10.1113/jphysiol.1961.sp006706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. HOLMAN M. E. Membrane potentials recorded with high-resistance micro-electrodes; and the effects of changes in ionic environment on the electrical and mechanical activity of the smooth muscle of the taenia coli of the guineapig. J Physiol. 1958 May 28;141(3):464–488. doi: 10.1113/jphysiol.1958.sp005989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Haffner J. F., Nesheim B. I., Setekleiv J. The effect of varying external K+ and Ca++ on the increase in 42K-efflux produced by phenylephrine and carbachol in circular rabbit fundus strips. Acta Pharmacol Toxicol (Copenh) 1973;33(1):33–41. doi: 10.1111/j.1600-0773.1973.tb01504.x. [DOI] [PubMed] [Google Scholar]
  24. Harder D. R., Sperelakis N. Membrane electrical properties of vascular smooth muscle from the guinea pig superior mesenteric artery. Pflugers Arch. 1978 Dec 28;378(2):111–119. doi: 10.1007/BF00584443. [DOI] [PubMed] [Google Scholar]
  25. Hermsmeyer K. Ba2+ and K+ alteration of K+ conductance in spontaneously active vascular muscle. Am J Physiol. 1976 Apr;230(4):1031–1036. doi: 10.1152/ajplegacy.1976.230.4.1031. [DOI] [PubMed] [Google Scholar]
  26. Hill S. J., Young J. M., Marrian D. H. Specific binding of 3H-mepyramine to histamine H1 receptors in intestinal smooth muscle. Nature. 1977 Nov 24;270(5635):361–363. doi: 10.1038/270361a0. [DOI] [PubMed] [Google Scholar]
  27. Ito Y., Kuriyama H., Sakamoto Y. Effects of tetraethylammonium chloride on the membrane activity of guinea-pig stomach smooth muscle. J Physiol. 1970 Dec;211(2):445–460. doi: 10.1113/jphysiol.1970.sp009286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. KURIYAMA H. The influence of potassium, sodium and chloride on the membrane potential of the smooth muscle of taenia coli. J Physiol. 1963 Apr;166:15–28. doi: 10.1113/jphysiol.1963.sp007088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kuriyama H., Osa T., Tasaki H. Electrophysiological studies of the antrum muscle fibers of the guinea pig stomach. J Gen Physiol. 1970 Jan;55(1):48–62. doi: 10.1085/jgp.55.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kuriyama H., Oshima K., Sakamoto Y. The membrane properties of the smooth muscle of the guinea-pig portal vein in isotonic and hypertonic solutions. J Physiol. 1971 Aug;217(1):179–199. doi: 10.1113/jphysiol.1971.sp009565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Oashi H., Takewaki T., Okada T. Calcium and the contractile effect of carbachol in the depolarized guinea-pig taenia caecum. Jpn J Pharmacol. 1974 Aug;24(4):601–611. doi: 10.1254/jjp.24.601. [DOI] [PubMed] [Google Scholar]
  32. SCHAYER R. W. Catabolism of physiological quantities of histamine in vivo. Physiol Rev. 1959 Jan;39(1):116–126. doi: 10.1152/physrev.1959.39.1.116. [DOI] [PubMed] [Google Scholar]
  33. Suzuki H., Morita K., Kuriyama H. Innervation and properties of the smooth muscle of the dog trachea. Jpn J Physiol. 1976;26(3):303–320. doi: 10.2170/jjphysiol.26.303. [DOI] [PubMed] [Google Scholar]
  34. WEISS G. B., COALSON R. E., HURWITZ L. K transport and mechanical responses of isolated longitudinal smooth muscle from guinea pig ileum. Am J Physiol. 1961 Apr;200:789–793. doi: 10.1152/ajplegacy.1961.200.4.789. [DOI] [PubMed] [Google Scholar]
  35. Zilletti L., Franchi-Micheli S., Maggi C. A. Histamine uptake and metabolism in smooth muscle in vitro [proceedings]. Agents Actions. 1978 Jun;8(4):408–408. doi: 10.1007/BF01968657. [DOI] [PubMed] [Google Scholar]
  36. Zilletti L., Franchi-Micheli S. Proceedings: Uptake and metabolism of histamine in guinea-pig ileal longitudinal muscle. Agents Actions. 1975 Dec;5(5):470–470. doi: 10.1007/BF01972682. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES