Skip to main content
Chinese Journal of Reparative and Reconstructive Surgery logoLink to Chinese Journal of Reparative and Reconstructive Surgery
. 2025 Sep;39(9):1143–1148. [Article in Chinese] doi: 10.7507/1002-1892.202506116

红外线热成像技术辅助股前外侧超薄穿支皮瓣设计与切取研究

Infrared thermography-assisted design and harvesting of ultrathin anterolateral thigh perforator flaps

Chenxi ZHANG 1,2, Jiadong PAN 1,2,*, Shanqing YIN 1,2, Guoqing SHAO 3, Xianting ZHOU 1,2, Gaoxiang YU 1,2, Luzhe WU 1,2, Xin WANG 1,2
PMCID: PMC12440698  PMID: 40948004

Abstract

Objective

To explore the application value of infrared thermography in the design and harvesting of ultrathin anterolateral thigh perforator flaps.

Methods

Between June 2024 and December 2024, 9 cases of ultrathin anterolateral thigh perforator flaps were designed and harvested with the assistance of infrared thermography. There were 7 males and 2 females, aged 21-61 years (mean, 39.8 years). The body mass index ranged from 19.49 to 26.45 kg/m² (mean, 23.85 kg/m²). Causes of injury included 5 cases of traffic accident injuries and 4 cases of machine crush injuries. There were 3 cases of leg wounds, 2 cases of foot wounds, and 4 cases of hand wounds. After debridement, the size of wound ranged from 7 cm×4 cm to 13 cm×11 cm. The time from admission to flap repair surgery was 5-12 days (mean, 7 days). Preoperatively, perforator localization was performed using a traditional Doppler flow detector and infrared thermography, respectively. The results were compared with the actual intraoperative locations; a discrepancy ≤10 mm was considered as consistent localization (positive), and the positive predictive value was calculated. All 9 cases were repaired with ultrathin anterolateral thigh perforator flaps designed and harvested based on thermographic images. The size of flap ranged from 8 cm×5 cm to 14 cm×8 cm, with a thickness of 3-6 mm (mean, 5.2 mm). One donor site was repaired with a full-thickness skin graft, and the others were sutured directly. Postoperatively, anti-inflammatory, anticoagulant, and anti-vascular spasm treatments were administered, and follow-up was conducted.

Results

The Doppler flow detector identified 22 perforating vessels within the set range, among which 16 were confirmed as superficial fascia layer perforators intraoperatively, with a positive predictive value of 72.7%. The infrared thermograph detected 23 superficial fascia layer perforating vessels, and 21 were verified intraoperatively, with a positive predictive value of 91.3%. There was no significant difference between the two methods [OR (95%CI)=3.93 (0.70, 22.15), P=0.100]. The perforator localization time of the infrared thermograph was (5.1±1.3) minutes, which was significantly shorter than that of the Doppler flow detector [(10.1±2.6) minutes; MD (95%CI)=–5.00 (–7.08, –2.91), P<0.001]. Postoperatively, 1 case of distal flap necrosis healed after dressing change; all other flaps survived successfully. The skin grafts at donor site survived, and all incisions healed by first intention. All patients were followed up 3-6 months (mean, 4.7 months). No pain or other discomfort occurred at the donor or recipient sites. All patients with foot wounds could walk with shoes, and no secondary flap revision was required. Flaps in 3 hand wound cases, 2 foot wound cases, and 3 leg wound cases recovered light touch and pressure sensation, but not pain or temperature sensation; the remaining 2 cases had no sensory recovery.

Conclusion

Preoperative localization using infrared thermography for repairing ultrathin anterolateral thigh perforator flaps can help evaluate the blood supply status of perforators, reduce complications, and improve surgical safety and flap survival rate.

Keywords: Infrared thermography, ultrathin anterolateral thigh perforator flap, superficial fascia layer perforator


穿支皮瓣在修复高功能、高美学要求部位(如手、足关节区域)的组织缺损中优势显著[1-2]。然而,传统皮瓣(如股前外侧皮瓣)常因皮下组织丰厚,应用于手背、足背或面部等精细部位时显得臃肿[3]。超薄皮瓣可提升柔韧性与贴合度,有效减少瘢痕挛缩和异物感,更利于关节功能与外观的恢复;同时,其保留了深层脂肪内的神经与淋巴结构,有助于预防相关并发症的发生[4]。即使供区需植皮,残余脂肪也有助于维持轮廓外观。然而,超薄皮瓣的薄型化切取增加了穿支血管及其分支损伤风险,尤其在术者对穿支走行及其终末灌注范围掌握不足时,易导致皮瓣边缘缺血甚至坏死[5]。此外,超薄穿支皮瓣蒂部血管较细,难以精准定位[5]。因此,如何在最大化功能与美学效果的同时确保皮瓣血供安全,是当前临床实践的关键挑战。

术前及术中影像学检查有助于准确识别穿支进入真皮的位置并提高手术成功率。彩色多普勒超声和CT血管造影(CT angiography,CTA)是目前公认的穿支血管定位方法,但存在成本高、有创以及操作不便等不足[6]。红外线热成像技术具有操作简便优点,目前已用于穿支血管检测[7-11],但在超薄穿支皮瓣领域的临床研究较少。2024年6月—12月,我们采用红外线热成像技术辅助9例股前外侧超薄穿支皮瓣设计并切取。现回顾分析患者临床资料,探讨该技术用于超薄穿支皮瓣的可行性及是否存在优势。报告如下。

1. 临床资料

1.1. 一般资料

患者纳入标准:① 足部或手部软组织缺损伴骨、肌腱、血管或神经干外露,不能采用植皮修复;② 患者能够耐受手术且术后能配合卧床;③ 患者同意手术方案。排除标准:① 存在旋股外侧动脉主干损伤;② 大腿外侧区软组织广泛挫伤、瘢痕增生;③ 合并脉管炎等严重血管性疾病。

本组男7例,女2例;年龄21~61岁,平均39.8岁。身体质量指数19.49~26.45 kg/m2,平均23.85 kg/m2。致伤原因:交通事故伤5例,机器挤压伤4例。创面部位:小腿3例,足部2例,手部4例。清创后创面范围7 cm×4 cm~13 cm×11 cm。术前彩色多普勒超声探测大腿外侧全层皮肤厚度8~15 mm,平均 11.1 mm。

1.2. 术前处理

1.2.1. 创面处理

入院后8例急诊清创后封闭式负压引流敷料覆盖创面,二期股前外侧超薄穿支皮瓣修复;入院至皮瓣修复术时间5~12 d,平均7 d。1例机器挤压导致手部脱套伤术后6个月瘢痕挛缩,术中切除瘢痕后切取皮瓣修复。

1.2.2. 穿支定位

① 彩色多普勒超声定位:麻醉前患者取平卧位,充分暴露术区大腿外侧,由同一位高年资医师使用多普勒血流探测仪探测股前外侧穿支血管并标记穿支点,记录穿支定位耗时。② 红外热成像技术定位:于23℃恒温手术室内完成操作。麻醉后患者取平卧位,静卧5 min,使体表温度稳定。将红外线热成像仪器(海康微影OQ35;杭州海康微影传感科技有限公司)固定于三脚架,待热像图稳定后,实时观察屏幕中热点位置、数量,并用记号笔标记皮瓣轴线(髂髌连线)附近热点(穿支点),记录穿支定位耗时。

1.3. 手术方法

臂丛阻滞麻醉联合持续硬膜外麻醉或蛛网膜下腔阻滞麻醉下,患者取平卧位。依据红外热成像技术探测的穿支点设计皮瓣。首先切开皮瓣外侧边界,沿切口边缘施加适当牵引,有助于界定两层脂肪之间的浅筋膜。在浅筋膜层面锐性分离,至穿支标记点时改为钝性分离,小心显露穿支血管。评估穿支血管质量,用蓝线标记。逆行穿支血管,切开深层脂肪、深筋膜,仔细分离追溯源血管。待分离足够长的血管蒂后,切开皮瓣另一侧,评估皮瓣血供,完成皮瓣显微移植前的准备。穿支周围如发现股外侧皮神经分支,可一并带入与受区神经吻合,以较好地恢复皮瓣感觉。本组皮瓣切取范围8 cm×5 cm~14 cm×8 cm;皮瓣厚度3~6 mm,平均5.2 mm,较全层皮肤厚度减少 40%~67%,平均46.8%。皮瓣切取后,供区8例创面宽度在7 cm以内直接拉拢缝合;1 例宽度>7 cm存在明显张力,取全厚皮片修复。

1.4. 术后处理及疗效评价指标

术后予以抗感染、抗凝及补液治疗。术后7 d内常规每2小时观察1次皮瓣血运,出现皮瓣危象及时处理。术后第8天如皮瓣血供稳定,转为一般护理。

术中观察多普勒血流探测仪及红外线成像技术确定的穿支点与实际位置差距,差距≤10 mm判定为定位符合(阳性),计算两种方法阳性预测值(术中确定阳性穿支/术前确定穿支×100%)。术后记录皮瓣成活和并发症发生情况。随访时观察皮瓣颜色、质地、感觉和供、受区手术瘢痕,以及有无疼痛和其他不适发生。

1.5. 统计学方法

采用SPSS31.0统计软件进行分析。计量资料经Shapiro-Wilk正态性检验均符合正态分布,数据以均数±标准差表示,组间比较采用独立样本t检验;计数资料以频数和百分比表示,组间比较采用Fisher确切概率法。检验水准取双侧α=0.05。

2. 结果

多普勒血流探测仪在设定范围内发现穿支血管22支,术中证实浅筋膜层穿支血管16支,阳性预测值72.7%;红外线热成像仪发现浅筋膜层穿支血管23支,术中证实穿支血管21支,阳性预测值91.3%;两者差异无统计学意义 [OR(95%CI)=3.93(0.70,22.15),P=0.100]。红外线热成像仪穿支定位时间为(5.1±1.3)min,较多普勒血流探测仪定位(10.1±2.6)min缩短,差异有统计学意义 [MD(95%CI)=–5.00 (–7.08,–2.91),P<0.001]。

术后1例皮瓣远端出现面积为1 cm×1 cm坏死,经换药后愈合;其余皮瓣均顺利成活。供区植皮成活,切口均Ⅰ期愈合。患者均获随访,随访时间3~6个月,平均4.7个月。患者均无皮瓣供、受区疼痛和其他不适。皮瓣色泽、质地良好且蒂部平整。足部创面患者均能穿鞋行走,均未行二期皮瓣修整术。手部3例、足部2例、小腿3例皮瓣恢复轻触觉和压觉,但未恢复痛觉及温度觉;其余2例感觉未恢复。

3. 典型病例

例1 患者,男,57 岁。因“左足外伤后骨水泥植入5周”入院。身体质量指数25.25 kg/m2。入院检查:创面无脓性渗出,周围皮肤无红肿及皮温升高;感染相关实验室检查指标正常。术中取出骨水泥彻底清创后,左足背遗留面积为8 cm×7 cm创面。选择左侧大腿为供区,红外线热成像仪定位显示2个热点位置,定位耗时6 min;多普勒血流探测仪定位显示1条穿支血管,定位耗时11 min。基于热像图设计并切取游离股前外侧超薄穿支皮瓣;术中在浅筋膜层发现2条肌皮穿支动脉及各2条穿支静脉,与红外线热成像仪显示2个热点位置相符,与多普勒血流探测仪定位的1 条穿支血管位置相符;显微镜下解剖分离主要穿支至真皮下血管网的分支,游离穿支血管,然后皮瓣断蒂,测得皮瓣面积9 cm×8 cm、厚度5 mm,游离移植至左足缺损处。供区直接拉拢缝合。术后皮瓣顺利成活,供、受区创面Ⅰ期愈合。患者术后3个月随访,穿鞋无障碍,对外观、质地、感觉满意。见图1

图 1.

Case 1

例1

a. 术前创面外观;b. 术前红外线热成像仪定位穿支血管(箭头);c. 术中皮瓣设计;d. 术中穿支血管位置与热像图热点位置一致;e. 术中超薄股前外侧穿支皮瓣吻合前;f. 术后7 d皮瓣成活

a. Preoperative appearance of the wound; b. Preoperative localization of perforating vessels (arrow) via infrared thermography; c. Intraoperative flap design; d. Consistency between the intraoperative location of the perforating vessel and the hot spot on the thermogram; e. Ultrathin anterolateral thigh perforator flap before anastomosis; f. Flap survival at 7 days postoperatively

图 1

例 2 患者,男,22 岁。因“机器挤压导致左手脱套伤术后6个月瘢痕挛缩,指体活动受限,要求进一步改善功能外观”入院。身体质量指数23.15 kg/m2。行左手瘢痕切除、关节松解、肌腱粘连松解,中环指指蹼成形。瘢痕挛缩皮肤切除后遗留创面面积9 cm×4 cm。选择左侧大腿为供区,红外线热成像仪定位显示2个热点位置,定位用时5 min;多普勒血流探测仪定位显示1条穿支血管,定位用时10 min。基于热像图设计并切取股前外侧超薄穿支皮瓣,术中发现2条肌皮穿支动脉及各2条穿支静脉,与红外线热成像仪显示2个热点位置相符,与多普勒血流探测仪标记的1 条穿支血管位置相符;皮瓣切取面积10 cm×5 cm,皮瓣厚度4 mm,游离移植至左手缺损处。供区直接缝合关闭。患者术后3个月随访,小指屈伸活动较术前好转,对外观、质地、感觉满意。见图2

图 2.

Case 2

例2

a. 术前创面外观;b. 术前红外线热成像仪定位穿支血管(箭头);c. 术中皮瓣设计;d. 术中见穿支血管位置与热像图热点位置一致;e. 术中超薄股前外侧穿支皮瓣吻合前;f. 术后3个月外观

a. Preoperative appearance of the wound; b. Preoperative localization of perforating vessels (arrow) via infrared thermography; c. Intraoperative flap design; d. Consistency between the intraoperative location of the perforating vessel and the hot spot on the thermogram; e. Ultrathin anterolateral thigh perforator flap before anastomosis; f. Flap appearance at 3 months postoperatively

图 2

4. 讨论

术前精准掌握穿支血管位置、管径、走行及皮瓣内吻合情况,是安全高效实施穿支皮瓣手术的基石。 影像学技术在术前定位中扮演着重要角色。Mohan 等[12]指出术前穿支定位能优化乳房再造皮瓣设计,降低手术难度并增强术者对修复效果的预期。Fitzgerald等[13]的研究显示应用CTA术前定位腹壁下动脉穿支血管,手术时间显著缩短,皮瓣探查率由11.2%降至6.9%。彩色多普勒超声具有无创、便捷和无辐射风险特点,常用于预测穿支穿出深筋膜的位置[14]。然而,该检查对浅筋膜层穿支探测准确性高度依赖操作者的技术与经验,过于纤细的穿支可能难以追踪[15]。更重要的是,超薄穿支皮瓣的切取要求精确识别穿支进入真皮的关键点。彩色多普勒超声探头对皮肤的轻度压迫可能导致浅表血管压闭,限制了对浅部穿支走向的追踪,常导致术中发现的穿支与术前定位结果不匹配。穿支血管自深筋膜穿出后,其向真皮下血管网的细小分支若被盲目修薄切断,将造成不可逆灌注损伤。

红外热成像技术作为一种非侵入性、实时可视化的评估手段,在皮瓣术中评估中的价值已获多项研究证实[16-17]。有研究认为该技术在定位下肢重建带蒂穿支皮瓣主要血管方面可靠性高于手持多普勒[18]。然而,这些研究主要聚焦于常规厚度皮瓣,在超薄皮瓣领域的应用探索相对不足。本研究将红外热成像技术引入超薄穿支皮瓣的术前设计。结果表明热像图中清晰显示穿支动脉在体表的特征性热信号,并动态反映血流灌注状态。我们认为红外热成像技术检测到的体表热区分布,本质上是局部微循环代谢产热与血运优势的反映,可作为浅筋膜层穿支血管存在的间接影像学证据。值得注意的是,我们发现部分患者热点范围大于彩色多普勒超声显示的穿支血管范围,可能是穿支血管区之间的直接连接[19],为安全扩大超薄皮瓣设计范围提供了理论依据。本组临床应用提示,相比彩色多普勒超声,红外热成像技术穿支定位耗时明显缩短,且对浅筋膜层穿支血管的定位更准确。

然而,红外热成像技术亦存在局限性。 我们观察到其识别穿支进入真皮位置时存在假阳性,分析可能是浅筋膜层血管网络影响产生的热区伪影。为克服单一技术不足,我们建议临床实践中能结合术前彩色多普勒超声或CTA检查探测深筋膜层的穿支血管,再辅以术中红外热成像技术实时反映浅筋膜穿支的功能状态(即实际灌注优势区)。 两者信息叠加可显著提升超薄穿支皮瓣穿支血管定位的准确性。在本组观察到主要穿支热点周围常存在相对均一的温热区域。据此,我们总结出以下操作要点:① 术前标记轴线:标记股前外侧皮瓣轴线(髂髌连线),重点观察轴线附近热点。② 静态识别:多数患者静态观察即可见亮度差异显著的热点,选择最亮度点标记。③ 动态鉴别:遇热点呈片状分布时,可用乙醇纱布擦拭皮肤后,动态观察皮肤复温过程,标记最早显影且亮度最高的热点。④ 边界参考:标记点的边界常与术中根据穿支位置设计的皮瓣范围相符。

综上述,红外线热成像技术作为一种非侵入性、实时可视化的评估手段,在超薄穿支皮瓣的术前设计展现出较高的应用价值。但本研究局限性在于样本量小且皮瓣类型有限,尚不足以建立具有广泛适用性、严格定量化红外热成像技术解读标准(如精确的ΔT阈值、片状热区精确定位算法)。对于片状热区,精确定位主穿支点需结合热像图的高分辨率局部分析(识别峰值点、核心区、梯度中心)和复温动力学观察,并尽可能参考术前影像学定位信息。未来研究需扩大样本量,并将该技术应用于多种类型的穿支皮瓣中进行系统性验证,以推动解读标准的建立。

利益冲突 在课题研究和文章撰写过程中不存在利益冲突;经费支持没有影响文章观点和对研究数据客观结果的分析及其报道

伦理声明 研究方案经宁波市第六医院伦理委员会批准(2022研第012号);患者均签署知情同意书

作者贡献声明 潘佳栋、尹善青、王欣:研究设计;张晨曦、尹善青、周贤挺、邵国庆:研究实施;俞高翔、邬璐哲:数据收集整理及统计分析;张晨曦:文章撰写

Funding Statement

宁波市医疗卫生高端团队(2022020506);浙江省医药卫生科技计划项目(2025KY1481);宁波市重点研发计划(2023Z194);宁波市自然科学基金(2024J321)

Ningbo Top Medical and Health Research Program (2022020506); Medical and Health Science and Technology Project of Zhejiang Province (2025KY1481); Ningbo Key Research & Development Program (2023Z194); Natural Science Foundation of Ningbo (2024J321)

References

  • 1.王欣, 潘佳栋 功能性穿支皮瓣的概念与应用. 中华显微外科杂志. 2024;47(6):611–613. doi: 10.3760/cma.j.cn441206-20240328-00088. [DOI] [Google Scholar]
  • 2.Bae J, Lee JK, Lee KT. Advancing pure-skin-perforator flap application: microscope-free harvesting, versatile donor sites, and clinical outcomes. Plast Reconstr Surg, 2025. doi: 10.1097/PRS.0000000000012215.
  • 3.Pan Z, Zhao Y, Ye X, et al Surgical refinements and sensory and functional outcomes of using thinned sensate anterolateral thigh perforator flaps for foot and ankle reconstruction: A retrospective study. Medicine (Baltimore) 2024;103(37):e38763. doi: 10.1097/MD.0000000000038763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Zhou JD, Zhang XF, Xu TL, et al. Super-thin anterolateral thigh flap for reconstruction of the medial plantar artery perforator flap donor site. J Orthop Surg (Hong Kong), 2023, 31(2): 10225536231181706. doi: 10.1177/10225536231181706.
  • 5.Debelmas A, Camuzard O, Aguilar P, et al Reliability of Color Doppler ultrasound imaging for the assessment of anterolateral thigh flap perforators: a prospective study of 30 perforators. Plast Reconstr Surg. 2018;141(3):762–766. doi: 10.1097/PRS.0000000000004117. [DOI] [PubMed] [Google Scholar]
  • 6.Pan JD, Xu H, Xiao DC, et al Perforator detection by thermographic imaging augmented with tourniquet-reperfusion: a modified approach and preliminary report in distal lower leg reconstruction. Ann Plast Surg. 2021;87(4):451–456. doi: 10.1097/SAP.0000000000002741. [DOI] [PubMed] [Google Scholar]
  • 7.Liu Y, Fan W, Yu M, et al Comparison between mixed reality with artificial algorithms and ultrasound in localization of anterior thigh flap perforators: a prospective randomized controlled study. BMC Med. 2025;23(1):374. doi: 10.1186/s12916-025-04181-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Xie R, Liu Q, Zhang Y, et al A wireless infrared thermometry device for postoperative flap monitoring: Proof of concept in a porcine flap model. Int Wound J. 2023;20(6):1839–1848. doi: 10.1111/iwj.14034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.周贤挺, 潘佳栋, 邵国庆, 等 改良红外热成像技术辅助设计腓动脉穿支螺旋桨皮瓣的临床应用. 中华显微外科杂志. 2022;45(3):260–265. doi: 10.3760/cma.j.cn441206-20211216-00299. [DOI] [Google Scholar]
  • 10.Hong Z, Li Z, Zhang X, et al Optimizing thoracodorsal artery perforator flap outcomes in oncoplastic breast surgery: multidimensional assistive techniques mitigate learning curve and enhance feasibility. Sci Rep. 2025;15(1):10937. doi: 10.1038/s41598-025-95073-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.肖栋超, 潘佳栋, 周贤挺, 等 止血带控制再灌注增强红外热成像术辅助设计腓肠内侧动脉穿支皮瓣的临床应用. 中华整形外科杂志. 2023;39(12):1324–1330. doi: 10.3760/cma.j.cn114453-20230704-00145. [DOI] [Google Scholar]
  • 12.Mohan AT, Saint-Cyr M Advances in imaging technologies for planning breast reconstruction. Gland Surg. 2016;5(2):242–254. doi: 10.3978/j.issn.2227-684X.2016.01.03. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Fitzgerald O’Connor E, Rozen WM, Chowdhry M, et al Preoperative computed tomography angiography for planning DIEP flap breast reconstruction reduces operative time and overall complications. Gland Surg. 2016;5(2):93–98. doi: 10.3978/j.issn.2227-684X.2015.05.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.刘前圆, 周建东, 王文成, 等 高频彩色多普勒超声探测深层脂肪内穿支辅助超薄股前外侧皮瓣切取的前瞻性研究. 中国修复重建外科杂志. 2024;38(1):62–68. doi: 10.7507/1002-1892.202310091. [DOI] [Google Scholar]
  • 15.谢松林, 唐举玉, 陶克奇, 等 游离修薄穿支皮瓣的临床研究. 中华显微外科杂志. 2012;35(4):321–322. doi: 10.3760/cma.j.issn.1001-2036.2012.04.020. [DOI] [Google Scholar]
  • 16.徐宏征, 张书诺, 章一新, 等 红外热成像技术与彩色多普勒超声在股前外侧穿支皮瓣术前穿支血管探测中的比较. 中华显微外科杂志. 2021;44(4):388–391. doi: 10.3760/cma.j.cn441206-20210319-00084. [DOI] [Google Scholar]
  • 17.李海, 肖顺娥, 邓呈亮, 等 红外热成像辅助设计旋股外侧动脉穿支嵌合皮瓣修复儿童关节复合组织缺损. 中华整形外科杂志. 2025;41(4):333–339. doi: 10.3760/cma.j.cn114453-20240528-00142. [DOI] [Google Scholar]
  • 18.Afzal MO, Haq AU, Riaz MA, et al Lower extremity reconstruction: utility of smartphone thermal imaging camera in planning perforator based pedicled flaps. J Ayub Med Coll Abbottabad. 2020;32(Suppl 1):S612–S617. [PubMed] [Google Scholar]
  • 19.Chubb DP, Taylor GI, Ashton MW True and ‘choke’ anastomoses between perforator angiosomes: part Ⅱ. dynamic thermographic identification. Plast Reconstr Surg. 2013;132(6):1457–1464. doi: 10.1097/01.prs.0000434407.73390.82. [DOI] [PubMed] [Google Scholar]

Articles from Chinese Journal of Reparative and Reconstructive Surgery are provided here courtesy of Sichuan University

RESOURCES