Abstract
Phrenic nerve discharges were recorded as an output of respiratory activity in anaesthetized, vagotomized cats immobilized by gallamine and artificially ventilated with room air. 2. With the carotid sinus nerve (c.s.n.) intact or denervated, PcO2 threshold levels (Pth, CO2) were determined at arterial pH, varied between 7.0 and 7.6 ([H+] 25-100 nM) by successive intravenous infusions of 0.5 N-HCl or 1.0 M-NaHCO3. Ventilation was increased stepwise to induce a successive decrease in end-tidal PCO2. Pth, CO2 was defined as the level of end-tidal PCO2 at which phrenic discharges ceased. 3. With the c.s.n. intact, Pth, CO2 decreased linearly upon increasing arterial [H+]. The mean regression line, calculated from seven cats, was Pth, CO2 =-0.37 [H+] + 34.33. A similar inverse relationship was observed with the c.s.n. denervated. However, the slope of the regression line was significantly smaller, the mean regression line/eleven cats) being Pth,CO2 =-0.18 [H+]+ 35.06. 4. The relative contributions of arterial [H+] and PCO2 in stimulating the peripheral and central chemoreceptors could be estimated quantitatively. Arterial [H+] appears to be almost equally effective on both peripheral and central chemoreceptors; PCO2 acts exclusively on the central chemoreceptors. 5. Thus, the additive theory regarding the induction of respiratory activity by arterial [H+] and PCO2 was confirmed. In addition, the H+ drive was shown to be able to affect respiratory activity even in the absence of the peripheral chemoreceptors.
Full text
PDF














Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berkenbosch A., van Dissel J., Olievier C. N., de Goede J., Herringa J. The contribution of the peripheral chemoreceptors to the ventilatory response to CO2 in anaesthetized cats during hyperoxia. Respir Physiol. 1979 Aug;37(3):381–390. doi: 10.1016/0034-5687(79)90083-5. [DOI] [PubMed] [Google Scholar]
- Borison H. L., Gonsalves S. F., Montgomery S. P., McCarthy L. E. Dynamics of respiratory VT response to isocapnic pHa forcing in chemodenervated cats. J Appl Physiol Respir Environ Exerc Physiol. 1978 Oct;45(4):502–511. doi: 10.1152/jappl.1978.45.4.502. [DOI] [PubMed] [Google Scholar]
- Crawford R. D., Severinghaus J. W. CSF pH and ventilatory acclimatization to altitude. J Appl Physiol Respir Environ Exerc Physiol. 1978 Aug;45(2):275–283. doi: 10.1152/jappl.1978.45.2.275. [DOI] [PubMed] [Google Scholar]
- Fencl V., Miller T. B., Pappenheimer J. R. Studies on the respiratory response to disturbances of acid-base balance, with deductions concerning the ionic composition of cerebral interstitial fluid. Am J Physiol. 1966 Mar;210(3):459–472. doi: 10.1152/ajplegacy.1966.210.3.459. [DOI] [PubMed] [Google Scholar]
- Fitzgerald R. S., Gross N., Dutton R. E. Ventilatory responses to transient acidic and hypercapnic vertebral artery infusions. Respir Physiol. 1968 May;4(3):387–395. doi: 10.1016/0034-5687(68)90043-1. [DOI] [PubMed] [Google Scholar]
- Gelfand R., Lambertsen C. J. Dynamic respiratory response to abrupt change of inspired CO2 at normal and high PO2. J Appl Physiol. 1973 Dec;35(6):903–913. doi: 10.1152/jappl.1973.35.6.903. [DOI] [PubMed] [Google Scholar]
- Gray B. A. Response of the perfused carotid body to changes in pH and PCO2. Respir Physiol. 1968 Mar;4(2):229–245. doi: 10.1016/0034-5687(68)90054-6. [DOI] [PubMed] [Google Scholar]
- HAMILTON R. W., Jr, BROWN E. B., Jr CARBON DIOXIDE, OXYGEN, AND ACIDITY. THE INTERACTION AND INDEPENDENT EFFECTS ON BREATHING OF THESE FACTORS IN THE ARTERIAL BLOOD. SAM-TR-64-94. AMD TR Rep. 1964 Dec;:1–42. [PubMed] [Google Scholar]
- HONDA Y., HASUMURA N., NATSUI T., NAKAMURA K. Threshold P-CO2 dependence on arterial pH for the respiratory system of dogs. J Appl Physiol. 1962 Nov;17:866–870. doi: 10.1152/jappl.1962.17.6.866. [DOI] [PubMed] [Google Scholar]
- Heeringa J., Berkenbosch A., de Goede J., Olievier C. N. Relative contribution of central and peripheral chemoreceptors to the ventilatory response to CO2 during hyperoxia. Respir Physiol. 1979 Aug;37(3):365–379. doi: 10.1016/0034-5687(79)90082-3. [DOI] [PubMed] [Google Scholar]
- KATSAROS B. DIE ROLLE DER CHEMORECEPTOREN DES CAROTISGEBIETS DER NARKOTISIERTEN KATZE FUER DIE ANTWORT DER ATMUNG AUF ISOLIERTE ANDERUNG DER WASSERSTOFFIONEN-KONZENTRATION UND DES CO2-DRUCKS DES BLUTES. Pflugers Arch Gesamte Physiol Menschen Tiere. 1965;282:157–178. [PubMed] [Google Scholar]
- Kaehny W. D., Jackson J. T. Respiratory response to HCl acidosis in dogs after carotid body denervation. J Appl Physiol Respir Environ Exerc Physiol. 1979 Jun;46(6):1138–1142. doi: 10.1152/jappl.1979.46.6.1138. [DOI] [PubMed] [Google Scholar]
- Kiwull P., Wiemer W., Schöne H. The role of the carotid chemoreceptors in the CO 2 -hyperpnea under hyperoxia. Pflugers Arch. 1972;336(2):171–186. doi: 10.1007/BF00592930. [DOI] [PubMed] [Google Scholar]
- LOESCHCKE H. H., KATSAROS B., LERCHE D. [Differentiation of the effects of CO2 pressure and hydrogen ion concentration in the blood on respiration in man]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:461–466. [PubMed] [Google Scholar]
- LOESCHCKE H. H., KOEPCHEN H. P., GERTZ K. H. Uber den Einfluss von Wasserstoffionenkonzentration und CO2-Druck im Liquor cerebrospinalis auf die Atmung. Pflugers Arch. 1958;266(6):569–585. doi: 10.1007/BF00363036. [DOI] [PubMed] [Google Scholar]
- Loeschcke H. H., De Lattre J., Schläfke M. E., Trouth C. O. Effects on respiration and circulation of electrically stimulating the ventral surface of the medulla oblongata. Respir Physiol. 1970 Sep;10(2):184–197. doi: 10.1016/0034-5687(70)90082-4. [DOI] [PubMed] [Google Scholar]
- Munson E. S., Larson C. P., Jr, Babad A. A., Regan M. J., Buechel D. R., Eger E. I., 2nd The effects of halothane, fluroxene and cyclopropane on ventilation: a comparative study in man. Anesthesiology. 1966 Nov-Dec;27(6):716–728. doi: 10.1097/00000542-196611000-00002. [DOI] [PubMed] [Google Scholar]
- Natsui T. Respiratory response to arterial H+ at different levels of arterial PCO2 during hyperoxia or hypoxia. Pflugers Arch. 1970;316(1):34–50. doi: 10.1007/BF00587895. [DOI] [PubMed] [Google Scholar]
- Natsui T. Threshold PCO 2 as a chemical stimulus for ventilation during acute hypoxia in dogs. Pflugers Arch. 1973 Mar 30;339(3):217–224. doi: 10.1007/BF00587373. [DOI] [PubMed] [Google Scholar]
- Natsui T., Yamazaki T., Kuwana S. Analysis of dynamic change in phrenic nerve activity following a sudden decrease in alveolar carbon dioxide. Jpn J Physiol. 1980;30(3):333–344. doi: 10.2170/jjphysiol.30.333. [DOI] [PubMed] [Google Scholar]
- PAPPENHEIMER J. R., FENCL V., HEISEY S. R., HELD D. ROLE OF CEREBRAL FLUIDS IN CONTROL OF RESPIRATION AS STUDIED IN UNANESTHETIZED GOATS. Am J Physiol. 1965 Mar;208:436–450. doi: 10.1152/ajplegacy.1965.208.3.436. [DOI] [PubMed] [Google Scholar]
- Pappenheimer J. R. The ionic composition of cerebral extracellular fluid and its relation to control of breathing. Harvey Lect. 1967;61:71–94. [PubMed] [Google Scholar]
- SAITO K., HONDA Y., HASUMURA N. Evaluation of respiratory response to changes in pCO2 and hydrogen ion concentration of arterial blood in rabbits and dogs. Jpn J Physiol. 1960 Dec 15;10:634–645. doi: 10.2170/jjphysiol.10.634. [DOI] [PubMed] [Google Scholar]
