Abstract
1. Membrane potential measurements were carried out on endoderm cells from early Xenopus embryos in order to study neutral amino acid transport in non-excitable cells. 2. The electrical properties of the cell membrane were studied under normal conditions, then in the presence of various Na/K-pump inhibitors and at different Na, K and Cl concentrations in Ringer solution. Blockade of the Na/K-pump by ouabain, Li, cooling to 10 degrees C or low [Na]0 induces similar depolarizations of about 40 mV. 3. External application of various neutral L-amino acids induces reversible membrane depolarizations. The D-isomeric forms are found to be ineffective. The amino acid induced depolarizations are not accompanied by changes in membrane resistance. They do not show voltage dependence for potential changes of less than 40 mV. 4. The amino acid depolarization increases with increasing concentration and follows first order Michaëlian kinetics. Both the size and the time course of the amino acid depolarization depend on [Na]0. Increasing [Na]0 markedly increases the apparent affinity of the membrane receptor for amino acid. 5. Increasing [k]0 reduces the size of the amino acid response. Short exposures to either ouabain or Li do not alter the amino acid depolarization. However, p time course of the amino acid depolarization depend on [Na]0. Increasing [Na]0 markedly increases the apparent affinity of the membrane receptor for amino acid. 5. Increasing [k]0 reduces the size of the amino acid response. Short exposures to either ouabain or Li do not alter the amino acid depolarization. However, p time course of the amino acid depolarization depend on [Na]0. Increasing [Na]0 markedly increases the apparent affinity of the membrane receptor for amino acid. 5. Increasing [k]0 reduces the size of the amino acid response. Short exposures to either ouabain or Li do not alter the amino acid depolarization. However, prolonged exposure to pump inhibitors or marked alteration of the Na concentration gradient leads to a complete inhibition of amino acid responses. 6. The results are in good agreement with the notion that the amino acid induced responses reflect the activation of an electrogenic amino acid carrier, very likely co-transporting Na and amino acid.
Full text
PDF



















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beck J. C., Sacktor B. The sodium electrochemical potential-mediated uphill transport of D-glucose in renal brush border membrane vesicles. J Biol Chem. 1978 Aug 10;253(15):5531–5535. [PubMed] [Google Scholar]
- CRANE R. K. Hypothesis for mechanism of intestinal active transport of sugars. Fed Proc. 1962 Nov-Dec;21:891–895. [PubMed] [Google Scholar]
- CSAKY T. Z. Effect of cardioactive steroids on the active transport of non-electrolytes. Biochim Biophys Acta. 1963 Jul 2;74:160–162. doi: 10.1016/0006-3002(63)91350-7. [DOI] [PubMed] [Google Scholar]
- Carter-Su C., Kimmich G. A. Effect of membrane potential on Na+-dependent sugar transport by ATP-depleted intestinal cells. Am J Physiol. 1980 Mar;238(3):C73–C80. doi: 10.1152/ajpcell.1980.238.3.C73. [DOI] [PubMed] [Google Scholar]
- Christensen H. N., de Cespedes C., Handlogten M. E., Ronquist G. Energization of amino acid transport, studied for the Ehrlich ascites tumor cell. Biochim Biophys Acta. 1973 Dec 28;300(4):487–522. doi: 10.1016/0304-4157(73)90017-8. [DOI] [PubMed] [Google Scholar]
- Crane R. K. Na+ -dependent transport in the intestine and other animal tissues. Fed Proc. 1965 Sep-Oct;24(5):1000–1006. [PubMed] [Google Scholar]
- Curran P. F., Schultz S. G., Chez R. A., Fuisz R. E. Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine. J Gen Physiol. 1967 May;50(5):1261–1286. doi: 10.1085/jgp.50.5.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Decker R. S. Disassembly of the zonula occludens during amphibian neurulation. Dev Biol. 1981 Jan 15;81(1):12–22. doi: 10.1016/0012-1606(81)90343-2. [DOI] [PubMed] [Google Scholar]
- Frizzell R. A., Schultz S. G. Effects of monovalent cations on the sodium-alanine interaction in rabbit ileum. Implication of anionic groups in sodium binding. J Gen Physiol. 1970 Oct;56(4):462–490. doi: 10.1085/jgp.56.4.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gupta B. L., Hall T. A., Naftalin R. J. Microprobe measurement of Na, K and Cl concentration profiles in epithelial cells and intercellular spaces of rabbit ileum. Nature. 1978 Mar 2;272(5648):70–73. doi: 10.1038/272070a0. [DOI] [PubMed] [Google Scholar]
- Hille B. The permeability of the sodium channel to metal cations in myelinated nerve. J Gen Physiol. 1972 Jun;59(6):637–658. doi: 10.1085/jgp.59.6.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iwatsuki N., Petersen O. H. Amino acids evoke short-latency membrane conductance increase in pancreatic acinar cells. Nature. 1980 Jan 31;283(5746):492–494. doi: 10.1038/283492a0. [DOI] [PubMed] [Google Scholar]
- KEYNES R. D., SWAN R. C. The permeability of frog muscle fibres to lithium ions. J Physiol. 1959 Oct;147:626–638. doi: 10.1113/jphysiol.1959.sp006265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kehoe J. S. Electrogenic effects of neutral amino acids on neurons of Aplysia californica. Cold Spring Harb Symp Quant Biol. 1976;40:145–155. doi: 10.1101/sqb.1976.040.01.016. [DOI] [PubMed] [Google Scholar]
- Kimmich G. A., Carter-Su C. Membrane potentials and the energetics of intestinal Na+-dependent transport systems. Am J Physiol. 1978 Sep;235(3):C73–C81. doi: 10.1152/ajpcell.1978.235.3.C73. [DOI] [PubMed] [Google Scholar]
- Lee C. O., Armstrong W. M. Activities of sodium and potassium ions in epithelial cells of small intestine. Science. 1972 Mar 17;175(4027):1261–1264. doi: 10.1126/science.175.4027.1261. [DOI] [PubMed] [Google Scholar]
- Maruyama T., Hoshi T. The effect of D-glucose on the electrical potential profile across the proximal tubule of newt kidney. Biochim Biophys Acta. 1972 Sep 1;282(1):214–225. doi: 10.1016/0005-2736(72)90327-6. [DOI] [PubMed] [Google Scholar]
- Okada Y., Tsuchiya W., Irimajiri A., Inouye A. Electrical properties and active solute transport in rat small intestine. I. Potential profile changes associated with sugar and amino acid transports. J Membr Biol. 1977 Mar 8;31(3):205–219. doi: 10.1007/BF01869405. [DOI] [PubMed] [Google Scholar]
- Paterson J. Y., Sepúlveda F. V., Smith M. W. Two-carrier influx of neutral amino acids into rabbit ileal mucosa. J Physiol. 1979 Jul;292:339–350. doi: 10.1113/jphysiol.1979.sp012854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preston R. L., Schaeffer J. F., Curran P. F. Structure-affinity relationships of substrates for the neutral amino acid transport system in rabbit ileum. J Gen Physiol. 1974 Oct;64(4):443–467. doi: 10.1085/jgp.64.4.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose R. C., Schultz S. G. Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences. J Gen Physiol. 1971 Jun;57(6):639–663. doi: 10.1085/jgp.57.6.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHULTZ S. G., ZALUSKY R. INTERACTIONS BETWEEN ACTIVE SODIUM TRANSPORT AND ACTIVE AMINO-ACID TRANSPORT IN ISOLATED RABBIT ILEUM. Nature. 1965 Jan 16;205:292–294. doi: 10.1038/205292a0. [DOI] [PubMed] [Google Scholar]
- SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. I. SHORT-CIRCUIT CURRENT AND NA FLUXES. J Gen Physiol. 1964 Jan;47:567–584. doi: 10.1085/jgp.47.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz S. G., Curran P. F. Coupled transport of sodium and organic solutes. Physiol Rev. 1970 Oct;50(4):637–718. doi: 10.1152/physrev.1970.50.4.637. [DOI] [PubMed] [Google Scholar]
- Schultz S. G. Sodium-coupled solute transport of small intestine: a status report. Am J Physiol. 1977 Oct;233(4):E249–E254. doi: 10.1152/ajpendo.1977.233.4.E249. [DOI] [PubMed] [Google Scholar]
- Ulbricht W. Ionic channels and gating currents in excitable membranes. Annu Rev Biophys Bioeng. 1977;6:7–31. doi: 10.1146/annurev.bb.06.060177.000255. [DOI] [PubMed] [Google Scholar]
- Warner A. E. The electrical properties of the ectoderm in the amphibian embryo during induction and early development of the nervous system. J Physiol. 1973 Nov;235(1):267–286. doi: 10.1113/jphysiol.1973.sp010387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White J. F., Armstrong W. M. Effect of transported solutes on membrane potentials in bullfrog small intestine. Am J Physiol. 1971 Jul;221(1):194–201. doi: 10.1152/ajplegacy.1971.221.1.194. [DOI] [PubMed] [Google Scholar]
