Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1981 Sep;318:339–354. doi: 10.1113/jphysiol.1981.sp013868

Spatial consequences of bleaching adaptation in cat retinal ganglion cells.

A B Bonds, C Enroth-Cugell
PMCID: PMC1245495  PMID: 7320894

Abstract

1. Experiments were conducted to study the effects of localized bleaching on the centre responses of rod-driven cat retinal ganglion cells. 2. Stimulation as far as 2 degrees from the bleaching site yielded responses which were reduced nearly as much as those generated at the bleaching site. Bleaching in the receptive field middle reduced responsiveness at a site 1 degrees peripheral more than bleaching at that peripheral site itself. 3. The effectiveness of a bleach in reducing centre responsiveness is related to the sensitivity of the region in which the bleach is applied. 4. Response reduction after a 0.2 degree bleach followed the same temporal pattern for concentric test spots of from 0.2 to 1.8 degrees in diameter, implying a substantially uniform spread of adaptation within these bounds. 5. A linear trade-off between fraction of rhodopsin and area bleached over a range of 8:1 yields the same pattern of response reduction, implying that the non-linear nature of bleaching adaptation is a property of the adaptation pool rather than independent photoreceptors.

Full text

PDF
339

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews D. P., Butcher A. K. Rod threshold and patterned rhodopsin bleaching; the pigment epithelium as an adaptation pool. Vision Res. 1971 Aug;11(8):761–785. doi: 10.1016/0042-6989(71)90001-0. [DOI] [PubMed] [Google Scholar]
  2. BARLOW H. B., FITZHUGH R., KUFFLER S. W. Change of organization in the receptive fields of the cat's retina during dark adaptation. J Physiol. 1957 Aug 6;137(3):338–354. doi: 10.1113/jphysiol.1957.sp005817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barlow H. B., Andrews D. P. Sensitivity of receptors and receptor "pools". J Opt Soc Am. 1967 Jun;57(6):837–838. doi: 10.1364/josa.57.000837. [DOI] [PubMed] [Google Scholar]
  4. Baylor D. A., Fuortes M. G., O'Bryan P. M. Receptive fields of cones in the retina of the turtle. J Physiol. 1971 Apr;214(2):265–294. doi: 10.1113/jphysiol.1971.sp009432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baylor D. A., Hodgkin A. L. Changes in time scale and sensitivity in turtle photoreceptors. J Physiol. 1974 Nov;242(3):729–758. doi: 10.1113/jphysiol.1974.sp010732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bonds A. B., Enroth-Cugell C. Recovery of cat retinal ganglion cell sensitivity following pigment bleaching. J Physiol. 1979 Oct;295:47–68. doi: 10.1113/jphysiol.1979.sp012954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bonds A. B., MacLeod D. I. The bleaching and regeneration of rhodopsin in the cat. J Physiol. 1974 Oct;242(1):237–253. doi: 10.1113/jphysiol.1974.sp010704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bonds A. B. Optical quality of the living cat eye. J Physiol. 1974 Dec;243(3):777–795. doi: 10.1113/jphysiol.1974.sp010777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Burkhardt D. A., Berntson G. G. Light adaptation and excitation: lateral spread of signals within the frog retina. Vision Res. 1972 Jun;12(6):1095–1111. doi: 10.1016/0042-6989(72)90100-9. [DOI] [PubMed] [Google Scholar]
  10. Cleland B. G., Enroth-Cugell C. Quantitative aspects of gain and latency in the cat retina. J Physiol. 1970 Jan;206(1):73–91. doi: 10.1113/jphysiol.1970.sp008998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cleland B. G., Enroth-cugell C. Quantitative aspects of sensitivity and summation in the cat retina. J Physiol. 1968 Sep;198(1):17–38. doi: 10.1113/jphysiol.1968.sp008591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cleland B. G., Levick W. R., Sanderson K. J. Properties of sustained and transient ganglion cells in the cat retina. J Physiol. 1973 Feb;228(3):649–680. doi: 10.1113/jphysiol.1973.sp010105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Easter S. S., Jr Adaptation in the goldfish retina. J Physiol. 1968 Mar;195(2):273–281. doi: 10.1113/jphysiol.1968.sp008458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Enroth-Cugell C., Jakiela H. G. Suppression of cat retinal ganglion cell responses by moving patterns. J Physiol. 1980 May;302:49–72. doi: 10.1113/jphysiol.1980.sp013229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Enroth-Cugell C., Lennie P. The control of retinal ganglion cell discharge by receptive field surrounds. J Physiol. 1975 Jun;247(3):551–578. doi: 10.1113/jphysiol.1975.sp010947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Enroth-Cugell C., Pinto L. H. Properties of the surround response mechanism of cat retinal ganglion cells and centre-surround interaction. J Physiol. 1972 Jan;220(2):403–439. doi: 10.1113/jphysiol.1972.sp009714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Enroth-Cugell C., Robson J. G. The contrast sensitivity of retinal ganglion cells of the cat. J Physiol. 1966 Dec;187(3):517–552. doi: 10.1113/jphysiol.1966.sp008107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Enroth-Cugell C., Shapley R. M. Adaptation and dynamics of cat retinal ganglion cells. J Physiol. 1973 Sep;233(2):271–309. doi: 10.1113/jphysiol.1973.sp010308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Enroth-Cugell C., Shapley R. M. Flux, not retinal illumination, is what cat retinal ganglion cells really care about. J Physiol. 1973 Sep;233(2):311–326. doi: 10.1113/jphysiol.1973.sp010309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fain G. L., Gold G. H., Dowling J. E. Receptor coupling in the toad retina. Cold Spring Harb Symp Quant Biol. 1976;40:547–561. doi: 10.1101/sqb.1976.040.01.051. [DOI] [PubMed] [Google Scholar]
  21. Green D. G., Tong L., Cicerone C. M. Lateral spread of light adaptation in the rat retina. Vision Res. 1977;17(3):479–486. doi: 10.1016/0042-6989(77)90042-6. [DOI] [PubMed] [Google Scholar]
  22. LIPETZ L. E. A mechanism of light adaptation. Science. 1961 Mar 3;133(3453):639–640. doi: 10.1126/science.133.3453.639. [DOI] [PubMed] [Google Scholar]
  23. Lennie P., Hertz B. G., Enroth-Cugell C. Saturation of rod pools in cat. Vision Res. 1976;16(9):935–940. doi: 10.1016/0042-6989(76)90223-6. [DOI] [PubMed] [Google Scholar]
  24. Normann R. A., Werblin F. S. Control of retinal sensitivity. I. Light and dark adaptation of vertebrate rods and cones. J Gen Physiol. 1974 Jan;63(1):37–61. doi: 10.1085/jgp.63.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. RUSHTON W. A. THE SENSITIVITY OF RODS UNDER ILLUMINATION. J Physiol. 1965 May;178:141–160. doi: 10.1113/jphysiol.1965.sp007620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. RUSHTON W. A. VISUAL ADAPTATION. Proc R Soc Lond B Biol Sci. 1965 Mar 16;162:20–46. doi: 10.1098/rspb.1965.0024. [DOI] [PubMed] [Google Scholar]
  27. Robson J. G., Enroth-Cugell C. Light distribution in the cat's retinal image. Vision Res. 1978;18(2):159–173. doi: 10.1016/0042-6989(78)90181-5. [DOI] [PubMed] [Google Scholar]
  28. Schwartz E. A. Rod-rod interaction in the retina of the turtle. J Physiol. 1975 Apr;246(3):617–638. doi: 10.1113/jphysiol.1975.sp010907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tachibana M. Threshold changes near the light-dark border: a comparison of real and equivalent background lights. Vision Res. 1977;17(1):117–122. doi: 10.1016/0042-6989(77)90209-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES