Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2025 Jun 28;50(6):986–994. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2025.240262

内质网应激抑制剂对脂多糖诱导的小鼠认知损伤的改善作用及其机制

Ameliorative effects and mechanisms of an integrated endoplasmic reticulum stress inhibitor on lipopolysaccharide-induced cognitive impairment in mice

LIU Dandan 1,1, LIU Wenjia 1, XIE Lihua 1, XU Xiaofan 2, ZHONG Xiaolin 1, CAO Wenyu 2, XU Yang 3,, CHEN Ling 1,
Editors: 游 毅, 郭 征
PMCID: PMC12464928  PMID: 41015558

Abstract

Objective

The integrated endoplasmic reticulum stress inhibitor (ISRIB) is a selective inhibitor of the protein kinase R-like endoplasmic reticulum kinase (PERK) signaling pathway within endoplasmic reticulum stress (ERS) and can improve spatial and working memory in aged mice. Although ERS and oxidative stress are tightly interconnected, it remains unclear whether ISRIB alleviates cognitive impairment by restoring the balance between ERS and oxidative stress. This study aims to investigate the effects and mechanisms of ISRIB on lipopolysaccharide (LPS)-induced cognitive impairment in mice.

Methods

Eight-week-old male ICR mice were randomly divided into 3 groups: Normal saline (NS) group, LPS group, and ISRIB+LPS group. NS and LPS groups received daily intraperitoneal injections of normal saline for 7 days; on day 7, LPS group mice received intraperitoneal LPS (0.83 mg/kg) to establish a cognitive impairment model. ISRIB+LPS group received ISRIB (0.25 mg/kg) intraperitoneally for 7 days, with LPS injected 30 minutes after ISRIB on day 7. Cognitive ability was evaluated by the novel place recognition test (NPRT). Real-time fluorogenic quantitative PCR (RT-qPCR) was used to detect changes in nitric oxide synthase (NOS), superoxide dismutase-1 (SOD-1), and catalase (CAT) gene expression in the hippocampus and prefrontal cortex. Oxidative stress markers malondialdehyde (MDA), glutathione (GSH), and oxidized glutathione (GSSG), were measured in hippocampal and prefrontal cortex tissues.

Results

Compared with the NS group, mice in LPS group showed a significant reduction in novel place recognition ratio, upregulation of hippocampal NOS-1 and NOS-2 mRNA, downregulation of SOD-1 and CAT mRNA, increased MDA and GSSG, decreased GSH, and reduced GSH/GSSG ratio (all P<0.05). Compared with the LPS group, mice in ISRIB+LPS group exhibited significantly improved novel place recognition, downregulated NOS-1 and NOS-2 mRNA, upregulated SOD-1 and CAT mRNA, decreased MDA and GSSG, increased GSH, and an elevated GSH/GSSG ratio in the hippocampus (all P<0.05). No significant changes were observed in the prefrontal cortex.

Conclusion

ISRIB improves LPS-induced cognitive impairment in mice by restoring the oxidative/antioxidant balance in the hippocampus.

Keywords: integrated endoplasmic reticulum stress inhibitor, endoplasmic reticulum stress, lipopolysaccharide, cognitive impairment, oxidative stress, hippocampus


随着人口老龄化的加剧,神经退行性变性疾病的发病率逐年攀升,阿尔茨海默病、帕金森病等存在认知能力受损、记忆功能减退等症状的疾病对患者的生活质量产生了极大的影响[1]。研究[2-3]发现海马和前额叶皮质对学习和记忆功能的影响至关重要,对认知的调节可能涉及不同脑区神经元结构和功能的改变。神经元具有丰富的内质网(endoplasmic reticulum,ER),正常生理状态下ER对神经元内蛋白质的合成、Ca2+动态平衡的维持等至关重要。当各种原因引起神经元内稳态失衡时,大量错误折叠或非折叠的蛋白质在ER中堆积,诱发内质网应激(endoplasmic reticulum stress,ERS)[4],从而激活未折叠蛋白反应(unfolded protein response,UPR),以清除ER中错误折叠的蛋白质,恢复细胞稳态[5]。ERS诱导Ca2+释放到细胞质中,引起线粒体内膜去极化,导致线粒体内生成过多的活性氧(reactive oxygen species,ROS)、活性氮(reactive nitrogen species,RNS)等自由基,进而通过影响蛋白质加工促进ER中错误折叠蛋白质的累积,进一步加剧ERS[6]。当细胞中的ROS、RNS等过度生成,超出细胞对氧化物的清除上限时,氧化和抗氧化失衡将导致组织损伤,从而诱发氧化应激[7]。由于中枢神经系统对氧化应激高度敏感,氧化和抗氧化失衡时可导致神经退行性变性疾病的发生[8]。因此,寻找使ER功能恢复正常的药物对于神经退行性变性疾病的防治极其重要[9]

内质网应激抑制剂(integrated endoplasmic reticulum stress inhibitor,ISRIB)是ERS中蛋白激酶R样内质网激酶(protein kinase R-like ER kinase,PERK)信号通路的抑制剂。研究[10-11]表明:ISRIB可改善老年小鼠的空间记忆及工作记忆能力,保护抗氧化酶,并减少ROS产生及细胞凋亡。ISRIB是否通过调节ERS与氧化应激之间的平衡,进而参与认知损伤,有待进一步明确。一氧化氮合酶(nitric oxide synthase,NOS)、抗氧化基因超氧化物歧化酶1(superoxide dismutase-1SOD-1)、过氧化氢酶(catalaseCAT)是氧化应激反应重要的标志物[12];丙二醛(malondialdehyde,MDA)是脂质过氧化物的终产物[13];还原型谷胱甘肽(glutathione,GSH)、氧化型谷胱甘肽(oxidized glutathione,GSSG)是维持细胞内氧化还原平衡的关键缓冲对[14]。因此,本研究建立了脂多糖(lipopolysaccharide,LPS)所致的认知损伤小鼠模型,通过新位置识别实验(novel place recognition test,NPRT)检测小鼠的认知能力,并检测氧化应激反应重要的标志物NOSSOD-1CAT的mRNA表达情况,MDA、GSH及GSSG的含量,旨在探讨ISRIB对小鼠认知损伤的作用,以及该过程是否涉及ERS与氧化应激平衡的调节。

1. 材料与方法

1.1. 伦理声明

本研究已获得南华大学附属第一医院医学伦理委员会批准(审批号:2025220914001),并严格遵循实验室动物的护理和使用规范。

1.2. 材料

1.2.1. 实验动物

清洁级8周龄雄性ICR小鼠购自湖南斯莱克景达实验动物有限公司[许可证号:SCXK(湘)2019-0004]。实验前适应性喂养小鼠1周,饲养条件为温度(22±1) ℃,湿度(50±5)%,昼夜节律12 h/12 h,自由摄食摄水,3~5 d更换一次垫料。

1.2.2. 主要试剂和仪器

动物注射用LPS购自美国Sigma-Aldrich公司,经无菌生理盐水溶解后配成工作液;ISRIB购自美国Topscience公司,采用无菌生理盐水配成工作液;互补DNA(complementary DNA,cDNA)试剂盒购自美国Thermo Fisher Scientific公司;实时荧光定量PCR(real-time fluorogenic quantitative PCR,RT-qPCR)所用SYBR Premix EX Taq试剂盒购自日本Takara公司;MDA试剂盒购自北京索莱宝科技有限公司;GSH、GSSG试剂盒购自武汉伊莱瑞特生物科技股份有限公司。

实时荧光定量PCR仪购自美国Thermo Fisher Scientific公司;全自动酶标仪购自芬兰Thermo Fisher Labsystems公司。

1.3. 方法

1.3.1. 动物分组与认知损伤小鼠模型的建立

将39只8周龄雄性ICR小鼠随机分为3组:生理盐水对照(normal saline,NS)组、LPS组及ISRIB+LPS组,每组各13只。LPS组与ISRIB+LPS组的小鼠均腹腔注射LPS(给药剂量为0.83 mg/kg体重)以建立认知损伤模型[15-17]。NS组与LPS组的小鼠均每天给予腹腔注射等体积的0.9%生理盐水,持续7 d;ISRIB+LPS组的小鼠每天给予腹腔注射ISRIB (0.25 mg/kg),持续7 d;第7天给药30 min后,LPS组及ISRIB+LPS组的小鼠均腹腔注射LPS(0.83 mg/kg)。各组小鼠在末次注射LPS或生理盐水24 h后开始NPRT;行为学检测结束1 h后,给小鼠腹腔注射戊巴比妥(80 mg/kg)进行麻醉,脱颈处死后,分离海马、前额叶皮质组织用于后续检测。本研究的时间线路图见图1

图1.

图1

给药和行为学检测的时间线路图

Figure 1 Schematic timeline of drug treatment and behavioral tests

ISRIB: Integrated endoplasmic reticulum stress inhibitor; NS: Normal saline; i.p.: Intraperitoneal injection; LPS: Lipopolysaccharide; NPRT: Novel place recognition test; RT-qPCR: Real-time fluorescence quantitative PCR; SOD-1: Superoxide dismutase-1; NOS: Nitric oxide synthase; CAT: Catalase; MDA: Malondialdehyde; GSH: Glutathione; GSSG: Oxidized glutathione.

1.3.2. NPRT

在预实验阶段,将材质、形状、大小以及颜色完全相同的物体A和A+分别放在旷场平行位置处,将小鼠放入旷场平台中央进行物体识别训练,5 min后取出,间隔1 h后进行实验期检测。在实验检测阶段,将物体A位置保持不动,物体A+由A的平行位置移动到A的对称位置,并记录小鼠5 min内对新位置上物体A+的探索频率及旧位置上物体A的探索频率,采用VisuTrack动物行为分析系统(上海欣软信息科技有限公司)跟踪小鼠的行动轨迹,计算其移动速度。每轮实验结束后,测试物体及旷场用75%的乙醇擦拭,以去除小鼠残留气味。计算新位置识别比(discrimination ratio)=(新位置探索频率-旧位置探索频率)/(新位置探索频率+旧位置探索频率)×100%,新位置识别比越高表明小鼠记忆力越好[18-19]

1.3.3. RT-qPCR

分别提取海马组织、前额叶皮质组织的总RNA后,依据cDNA试剂盒说明书中的步骤将RNA反转录为cDNA;使用SYBR Premix EX Taq试剂盒说明书进行检测。PCR的扩增反应体系为:TB Green Premix 5.0 μL,Rox Reference Dye 0.2 μL,正向/反向引物各0.4 μL,无酶水2 μL,cDNA 2 μL。PCR的扩增条件为:95 ℃预变性30 s;95 ℃变性5 s;60 ℃退火45 s,变性和退火重复40个循环。采用2-ΔΔCt法计算mRNA的表达水平,以甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)为内对照。引物序列见表1

表1.

引物序列

Table 1 Sequence of primers

Gene Sequences of primer (5'-3')
GAPDH

Forward

Reverse

ACCACCATGGAGAAGGCTGG

CTCAGTGTAGCCCAGGATGC

NOS-1

Forward

Reverse

TCATTTCTGTCCGTCTCTTCAA

ATCAGATCTGAGATGATCACCG

NOS-2

Forward

Reverse

ATCTTGGAGCGAGTTGTGGATTGTC

TAGGTGAGGGCTTGGCTGAGTG

NOS-3

Forward

Reverse

CTGAGAGCCTGCAATTACTACC

TTTCCACAGAGAGGATTGTAGC

SOD-1

Forward

Reverse

TGTCCATTGAAGATCGTGTGAT

TCATCTTGTTTCTCATGGACCA

CAT

Forward

Reverse

CACCTTCAAGTTGGTTAATGCA

TTTCCACAGAGAGGATTGTAGC

GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; NOS: Nitric oxide synthase; SOD-1: Superoxide dismutase-1; CAT: Catalase.

1.3.4. MDA含量的测定

分离海马及前额叶皮质组织,每0.1 g组织加入1 mL预冷提取液,进行组织匀浆,以8 000 g离心 10 min后,取上清液置于冰上,严格按照MDA试剂盒说明书的步骤测定MDA的含量。

1.3.5. GSH及GSSG含量测定

分离海马及前额叶皮质组织,每1 g组织加入9 mL提取液,以10 000 g离心10 min后,取上清液置于-80 ℃冰箱保存,严格按照GSH、GSSG试剂盒说明书的步骤测定GSH、GSSG的含量。

1.4. 统计学处理

采用GraphPad Prism 8.0软件进行统计学分析。经检验符合正态分布的计量数据以均数±标准误表示,2组之间比较采用t检验,多组之间比较采用单因素方差分析,P<0.05为差异有统计学意义。

2. 结 果

2.1. ISRIB可改善LPS导致的小鼠认知功能损伤

NPRT结果(图2)显示:与NS组相比,LPS组小鼠新位置识别比明显下降,而与LPS组相比,ISRIB+LPS组小鼠新位置识别比显著升高(均P<0.05);各组间小鼠的移动速度无明显差异(均 P>0.05)。

图2.

图2

3组小鼠新位置识别能力的比较

Figure 2 Comparison of novel place recognition ability among mice in the 3 groups

A: Activity trace in NPRT; B: Novel place discrimination ratio in NPRT; C: Moving speed in NPRT. Data are expressed as mean±standard error. n=13 in each group. *P<0.05 vs the NS group; †P<0.05 vs the LPS group.

2.2. ISRIB抑制认知损伤模型小鼠海马组织中氧化相关基因的表达,并促进抗氧化相关基因的表达

RT-qPCR检测结果(图3)显示:在小鼠海马组织中,与NS组相比,LPS组NOS-1、NOS-2NOS-3 mRNA的表达水平均显著升高,SOD-1CAT mRNA的表达水平均显著降低(均P<0.05);而与LPS组相比,ISRIB+LPS组NOS-1NOS-2 mRNA的表达水平均显著降低,SOD-1CAT mRNA表达水平均明显升高(均P<0.05)。在小鼠前额叶皮质组织中,各组间NOS-1、NOS-2、NOS-3SOD-1CAT的mRNA表达水平差异均无统计学意义(均P>0.05)。

图3.

图3

3组间小鼠海马(A)及前额叶皮质(B)组织中氧化应激相关基因mRNA表达水平的比较

Figure 3 Comparison of mRNA expression levels of oxidative stress-related genes in tissues of hippocampus (A) and prefrontal cortex (B) among mice in the 3 groups

Data are expressed as mean±standard error. n=7 in each group for hippocampus, n=5 in each group for prefrontal cortex. *P<0.05, **P<0.01, ***P<0.001 vs the NS group; †P<0.05, ††P<0.01 vs the LPS group.

2.3. ISRIB抑制认知损伤模型小鼠海马组织中MDA的累积

在小鼠海马组织中,与NS组相比,LPS组MDA的含量显著升高(P<0.01);而与LPS组相比,ISRIB+LPS组MDA的含量显著降低(P<0.05,图4A)。在小鼠前额叶皮质组织中,各组间MDA含量的差异均无统计学意义(均P>0.05,图4B)。

图4.

图4

3组间小鼠海马(A)及前额叶皮质(B)组织中MDA含量的比较

Figure 4 Comparison of MDA content in tissues of hippocampus (A) and prefrontal cortex (B) among mice in the 3 groups

Data are expressed as mean±standard error. n=4 in each group. **P<0.01vsthe NS group; †P<0.05 vs the LPS group.

2.4. ISRIB促进认知损伤模型小鼠海马组织中抗 氧化物的表达

在小鼠海马组织中,与NS组相比,LPS组小鼠海马组织中GSH的含量显著降低,而GSSG的含量显著升高(均P<0.05);与LPS组比较,ISRIB+LPS组小鼠海马组织中GSH的含量显著升高,而GSSG的含量显著降低(均P<0.01,图5A)。此外,LPS组的GSH/GSSG比值较NS组明显下降(P<0.05),而ISRIB+LPS组的GSH/GSSG比值较LPS组明显增加(P<0.001,图5A)。

图5.

图5

3组间小鼠海马(A)及前额叶皮质(B)组织中GSHGSSG含量的比较

Figure 5 Comparison of GSH and GSSG contents in tissues of hippocampus (A) and prefrontal cortex (B) among mice in the 3 groups

Data are expressed as mean±standard error. n=4 in each group. *P<0.05 vs the NS group; ††P<0.01, †††P<0.001 vs the LPS group.

在小鼠前额叶皮质组织中,各组间GSH、GSSG的含量及GSH/GSSG比值的差异均无统计学意义(均P>0.05,图5B)。

3. 讨 论

LPS作为一种从细菌中提取的内毒素,可通过激活模式识别受体、细胞因子和氧化应激途径触发全身炎症反应[15, 20],诱导SOD-1活性降低、GSH表达水平下降及脑组织脂质过氧化升高,加剧氧化应激[21]。本研究采用给予小鼠腹腔注射LPS建立认知损伤模型,NPRT结果显示LPS组小鼠新位置识别能力相较NS组显著下降,且各组小鼠运动能力不受药物干预的影响,表明LPS诱导的认知损伤模型构建成功。在ISRIB干预后,模型小鼠的新位置识别能力显著提升,表明ISRIB可改善小鼠的认知功能损伤。

既往研究[22]表明ERS可通过UPR及与线粒体之间的相互作用产生过多的ROS,诱导局部组织和细胞的氧化应激。ERS可通过自身跨膜蛋白相关途径的活化来激活抗氧化转录因子,从而上调众多抗氧化酶的表达,对抗氧化应激,维持细胞内环境中氧化-抗氧化的平衡[23]。广泛存在于体内的抗氧化酶SOD-1和CAT,主要通过催化细胞内过氧化物分解、清除细胞内ROS来抑制氧化应激对细胞造成损害[21-24]。当醛类化合物对眼角膜产生刺激时,ISRIB作为一种抑制ERS的小分子药物,可有效抑制其上皮细胞内ERS的激活和ROS的生成[25]。另有研究[26-27]表明ISRIB可改善啮齿类动物的创伤性脑损伤、唐氏综合征等疾病的神经精神症状。本研究发现:认知损伤模型小鼠海马组织中NOS-1NOS-2NOS-3的表达水平明显上调,而ISRIB可以降低NOS-1NOS-2NOS-3的表达水平。此外,ISRIB还可以逆转认知损伤模型小鼠海马中SOD-1CAT mRNA表达水平的下降。

作为反映机体抗氧化潜在能力的重要指标,MDA可反映ROS、RNS等自由基对机体组织的损伤程度[28]。本研究发现:认知损伤模型小鼠海马中MDA的含量显著增加,给予ISRIB干预后海马中MDA的含量下降。因此,ISRIB可能通过上调小鼠海马中抗氧化物的表达从而抑制氧化应激。

GSH、GSSG是体内最重要的氧化还原缓冲对之一,对维持细胞内氧化还原的平衡发挥关键作用[19]。氧化应激促进GSH的消耗,GSH可被ROS等氧化生成GSSG[29-30]。因此通过检测GSH、GSSG的含量及GSH/GSSG的比值,可有效反映细胞所处的氧化还原状态[31]。给予大鼠1-溴丙烷染毒可引起脑内GSH耗竭、脂质过氧化产物增加、神经元功能受损及细胞丢失[29]。本研究发现:认知损伤模型小鼠海马中GSH的含量明显下降,GSSG的含量显著增加,GSH/GSSG比值降低,而ISRIB干预可明显逆转上述改变。

目前研究[32-33]表明:前额叶皮质和海马之间的神经环路受到各个亚脑区的共同调控,同时也受不同类型神经元的调节,而空间记忆能力主要依赖于海马的陈述性记忆。本研究结果同样证实了小鼠海马中氧化应激相关改变在前额叶皮质中并不存在,这表明ISRIB可能是通过恢复认知损伤小鼠海马中的氧化还原水平进而发挥其保护作用。

综上所述,本研究发现ISRIB通过调节海马氧化应激反应的氧化-抗氧化平衡,改善LPS诱导的小鼠认知损伤。该结果为开发恢复认知功能的策略提供了新思路和实验依据。未来研究或可进一步探索ISRIB对神经退行性变性疾病患者的临床治疗与应用,从而造福更多患者。

基金资助

国家自然科学基金(82100537);湖南省自然科学基金(2022JJ30486)。

This work was supported by the National Natural Science Foundation (82100537) and the Natural Science Foundation of Hunan Province (2022JJ30486), China.

利益冲突声明

作者声称无任何利益冲突。

作者贡献

刘丹丹 数据分析,图表制作,论文撰写与修改;刘文佳、谢利华、许晓帆 实验操作,数据采集;钟小林、曹文宇 论文指导与修改;徐杨、陈玲 研究设计,论文指导与修改。所有作者阅读并同意最终的文本。

Footnotes

http://dx.chinadoi.cn/10.11817/j.issn.1672-7347.2025.240262

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202506986.pdf

参考文献

  • 1. Lane CA, Hardy J, Schott JM. Alzheimer’s disease[J]. Eur J Neurol, 2018, 25(1): 59-70. 10.1111/ene.13439. [DOI] [PubMed] [Google Scholar]
  • 2. Guo JY, Ragland JD, Carter CS. Memory and cognition in schizophrenia[J]. Mol Psychiatry, 2019, 24(5): 633-642. 10.1038/s41380-018-0231-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. 刘宇, 吴伟伟, 傅迪. 脓毒症相关性脑病易感小鼠海马的基因差异性[J]. 中南大学学报(医学版), 2024, 49(11): 1777-1789. 10.11817/j.issn.1672-7347.2024.240045. [DOI] [PMC free article] [PubMed] [Google Scholar]; LIU Yu, WU Weiwei, FU Di. Genetic differences in hippocampus of mice susceptible to sepsis-associated encephalopathy[J]. Journal of Central South University. Medical Science, 2024, 49(11): 1777-1789. 10.11817/j.issn.1672-7347.2024.240045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology[J]. Annu Rev Pathol, 2015, 10: 173-194. 10.1146/annurev-pathol-012513-104649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Pobre KFR, Poet GJ, Hendershot LM. The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: Getting by with a little help from ERdj friends[J]. J Biol Chem, 2019, 294(6): 2098-2108. 10.1074/jbc.REV118.002804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Martucciello S, Masullo M, Cerulli A, et al. Natural products targeting ER stress, and the functional link to mitochondria[J]. Int J Mol Sci, 2020, 21(6): 1905. 10.3390/ijms21061905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Sies H. Oxidative stress: a concept in redox biology and medicine[J]. Redox Biol, 2015, 4: 180-183. 10.1016/j.redox.2015.01.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Thingore C, Kshirsagar V, Juvekar A. Amelioration of oxidative stress and neuroinflammation in lipopolysaccharide-induced memory impairment using Rosmarinic acid in mice[J]. Metab Brain Dis, 2021, 36(2): 299-313. 10.1007/s11011-020-00629-9. [DOI] [PubMed] [Google Scholar]
  • 9. Kidder GW, Montgomery CW. Oxygenation of frog gastric mucosa in vitro[J]. Am J Physiol, 1975, 229(6): 1510-1513. 10.1152/ajplegacy.1975.229.6.1510. [DOI] [PubMed] [Google Scholar]
  • 10. Krukowski K, Nolan A, Frias ES, et al. Small molecule cognitive enhancer reverses age-related memory decline in mice[J/OL]. eLife, 2020, 9: e62048[2024-03-09]. 10.7554/eLife.62048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Bao JP, Qian ZY, Liu L, et al. Pharmacological disruption of phosphorylated eukaryotic initiation factor-2α/activating transcription factor 4/Indian hedgehog protects intervertebral disc degeneration via reducing the reactive oxygen species and apoptosis of nucleus pulposus cells[J]. Front Cell Dev Biol, 2021, 9: 675486. 10.3389/fcell.2021.675486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Chen HC, Lee JK, Yip T, et al. Sub-acute restraint stress progressively increases oxidative/nitrosative stress and inflammatory markers while transiently upregulating antioxidant gene expression in the rat hippocampus[J]. Free Radic Biol Med, 2019, 130: 446-457. 10.1016/j.freeradbiomed.2018.11.007. [DOI] [PubMed] [Google Scholar]
  • 13. Sedky AA, Magdy Y. Reduction in TNF alpha and oxidative stress by liraglutide: Impact on ketamine-induced cognitive dysfunction and hyperlocomotion in rats[J]. Life Sci, 2021, 278: 119523. 10.1016/j.lfs.2021.119523. [DOI] [PubMed] [Google Scholar]
  • 14. Izumi H, Sato K, Kojima K, et al. Oral glutathione administration inhibits the oxidative stress and the inflammatory responses in AppNL-G-F/NL-G-F knock-in mice[J]. Neuropharmacology, 2020, 168: 108026. 10.1016/j.neuropharm.2020.108026. [DOI] [PubMed] [Google Scholar]
  • 15. Zhang F, Zhang JG, Yang W, et al. 6-Gingerol attenuates LPS-induced neuroinflammation and cognitive impairment partially via suppressing astrocyte overactivation[J]. Biomed Pharmacother, 2018, 107: 1523-1529. 10.1016/j.biopha.2018.08.136. [DOI] [PubMed] [Google Scholar]
  • 16. Liu Q, Xi YJ, Wang QX, et al. Mannan oligosaccharide attenuates cognitive and behavioral disorders in the 5xFAD Alzheimer’s disease mouse model via regulating the gut microbiota-brain axis[J]. Brain Behav Immun, 2021, 95: 330-343. 10.1016/j.bbi.2021.04.005. [DOI] [PubMed] [Google Scholar]
  • 17. Guo DM, Xu Y, Wang YG, et al. Hyperactivation of TRPV4 causes the hippocampal pyroptosis pathway and results in cognitive impairment in LPS-treated mice[J]. Behav Brain Res, 2023, 439: 114223. 10.1016/j.bbr.2022.114223. [DOI] [PubMed] [Google Scholar]
  • 18. Li Y, Liu TT, Li YT, et al. Baicalin ameliorates cognitive impairment and protects microglia from LPS-induced neuroinflammation via the SIRT1/HMGB1 pathway[J]. Oxid Med Cell Longev, 2020, 2020: 4751349. 10.1155/2020/4751349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Deng YC, Li W, Niu L, et al. Amelioration of scopolamine-induced learning and memory impairment by the TRPV4 inhibitor HC067047 in ICR mice[J]. Neurosci Lett, 2022, 767: 136209. 10.1016/j.neulet.2021.136209. [DOI] [PubMed] [Google Scholar]
  • 20. Michels M, Vieira AS, Vuolo F, et al. The role of microglia activation in the development of sepsis-induced long-term cognitive impairment[J]. Brain Behav Immun, 2015, 43: 54-59. 10.1016/j.bbi.2014.07.002. [DOI] [PubMed] [Google Scholar]
  • 21. Chen L, Liu DD, Mao ML, et al. Betaine ameliorates acute sever ulcerative colitis by inhibiting oxidative stress induced inflammatory pyroptosis[J/OL]. Mol Nutr Food Res, 2022, 66(22): e2200341[2024-04-01]. 10.1002/mnfr.202200341. [DOI] [PubMed] [Google Scholar]
  • 22. Malhotra JD, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?[J]. Antioxid Redox Signal, 2007, 9(12): 2277-2293. 10.1089/ars.2007.1782. [DOI] [PubMed] [Google Scholar]
  • 23. Bettigole SE, Glimcher LH. Endoplasmic reticulum stress in immunity[J]. Annu Rev Immunol, 2015, 33: 107-138. 10.1146/annurev-immunol-032414-112116. [DOI] [PubMed] [Google Scholar]
  • 24. Bhatt S, Puli L, Patil CR. Role of reactive oxygen species in the progression of Alzheimer’s disease[J]. Drug Discov Today, 2021, 26(3): 794-803. 10.1016/j.drudis.2020.12.004. [DOI] [PubMed] [Google Scholar]
  • 25. Yan CX, Zhang LF, Lu B, et al. Trans, trans-2, 4-decadienal (tt-DDE), a composition of cooking oil fumes, induces oxidative stress and endoplasmic reticulum stress in human corneal epithelial cells[J]. Toxicol In Vitro, 2020, 68: 104933. 10.1016/j.tiv.2020.104933. [DOI] [PubMed] [Google Scholar]
  • 26. Chou A, Krukowski K, Jopson T, et al. Inhibition of the integrated stress response reverses cognitive deficits after traumatic brain injury[J/OL]. Proc Natl Acad Sci USA, 2017, 114(31): E6420-E6426[2024-04-01]. 10.1073/pnas.1707661114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Halliday M, Radford H, Sekine Y, et al. Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity[J/OL]. Cell Death Dis, 2015, 6(3): e1672[2024-04-01]. 10.1038/cddis.2015.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Ren BC, Zhang YF, Liu SS, et al. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways[J]. J Cell Mol Med, 2020, 24(21): 12355-12367. 10.1111/jcmm.15725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Wang HL, Ichihara G, Ito H, et al. Biochemical changes in the central nervous system of rats exposed to 1-bromopropane for seven days[J]. Toxicol Sci, 2002, 67(1): 114-120. 10.1093/toxsci/67.1.114. [DOI] [PubMed] [Google Scholar]
  • 30. Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease[J]. Antioxid Redox Signal, 2014, 21(3): 396-413. 10.1089/ars.2014.5851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Song M, Chen FF, Li YH, et al. Trimetazidine restores the positive adaptation to exercise training by mitigating statin-induced skeletal muscle injury[J]. J Cachexia Sarcopenia Muscle, 2018, 9(1): 106-118. 10.1002/jcsm.12250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Padilla-Coreano N, Canetta S, Mikofsky RM, et al. Hippocampal-prefrontal theta transmission regulates avoidance behavior[J/OL]. Neuron, 2019, 104(3): 601-610. e4[2024-04-01]. 10.1016/j.neuron.2019.08.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Oliva A, Fernández-Ruiz A, Leroy F, et al. Hippocampal CA2 sharp-wave ripples reactivate and promote social memory[J]. Nature, 2020, 587(7833): 264-269. 10.1038/s41586-020-2758-y. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES