Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1981 Aug;317:243–262. doi: 10.1113/jphysiol.1981.sp013823

The kinetics of ouabain-sensitive ionic transport in the rabbit carotid artery.

J F Heidlage, A W Jones
PMCID: PMC1246787  PMID: 7310733

Abstract

1. Ouabain (0.1 mM)-sensitive 42K influx and 24Na efflux have been measured in rabbit carotid arteries under conditions of high cellular potassium, [K]i, as well as sodium, [Na]i. About 50% of the total fluxes are ouabain-sensitive (active) under conditions of high [K]i. 2. The extracellular space, determined by 60Co-EDTA, was relatively large in comparison to cellular water. The ionic concentrations in normal solution, estimated from isotope flux components, are: [Na]i = 24; [K]i = 169; [Cl]i = 68 mmol/l cell water. 3. The ouabain=sensitive 42K influx and 24Na efflux in high-K tissues were measured at varying external concentrations of potassium, [K]o, and normal concentrations of external sodium, [Na]o. Sigmoidal kinetics were observed and fitted to a co-operative interaction model. The maximal efflux of 24Na, 0.245 muequiv/g wet weight per minute, was about 1.4 times that for 42K influx. Half-maximal stimulation was achieved at [K]0.5o of 2.4 mM for Na, and 3.4 mM for K transport. The flux ratio of Na to K approximated 1.5. 4. Increased 42K efflux was found in the presence of ouabain and the passive influx of 42K was corrected for this effect. In the absence of this correction the ouabain-sensitive 42K influx would be reduced, and the Na/K flux ratio raised to about 2. 5. The [K]o-dependence of ouabain-sensitive fluxes was measured on Na-loaded tissues. 24Na efflux exhibited saturation kinetics with a maximum of 1.18 muequiv/g wet weight per minute and [K]0.5o = 3.1 mM. The 42K influx was two thirds the active Na efflux for [K]o less than or equal to 5 mM. At high [K]o, however, the influx greatly exceeded the predicted levels. Evidence is presented for a ouabain-sensitive membrane hyperpolarization being responsible for an additional influx of 42K. 6. The ouabain-sensitive 24Na efflux showed a sigmoidal dependence on [Na]i in the presence of [K]o = 10 mM and normal [Na]o. The maximal efflux was 0.88 muequiv/g weight per minute and [Na]0.5i = 49 mmol/l cell water, which is about twice the physiological operating point. 7. It is concluded that active Na and K transport in rabbit carotid artery follow sigmoidal kinetics and the flux ratio is about 1.5. Changes in [K]o and [Na]i over the physiological range can markedly affect transport, and may regulate vascular contraction by their action on electrogenic transport.

Full text

PDF
243

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brace R. A., Anderson D. K., Chen W. T., Scott J. B., Haddy F. J. Local effects of hypokalemia on coronary resistance and myocardial contractile force. Am J Physiol. 1974 Sep;227(3):590–597. doi: 10.1152/ajplegacy.1974.227.3.590. [DOI] [PubMed] [Google Scholar]
  2. Brading A. F., Jones A. W. Distribution and kinetics of CoEDTA in smooth muscle, and its use as an extracellular marker. J Physiol. 1969 Feb;200(2):387–401. doi: 10.1113/jphysiol.1969.sp008700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brading A. F. Sodium/sodium exchange in the smooth muscle of the guinea-pig taenia coli. J Physiol. 1975 Sep;251(1):79–105. doi: 10.1113/jphysiol.1975.sp011082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brading A. F., Widdicombe J. H. An estimate of sodium-potassium pump activity and the number of pump sites in the smooth muscle of the guinea-pig taenia coli, using (3H)ouabain. J Physiol. 1974 Apr;238(2):235–249. doi: 10.1113/jphysiol.1974.sp010521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brading A. F., Widdicombe J. H. The use of lanthanum to estimate the numbers of extracellular cation-exchanging sites in the guinea-pig's taenia coli, and its effects on transmembrane monovalent ion movements. J Physiol. 1977 Apr;266(2):255–273. doi: 10.1113/jphysiol.1977.sp011767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CASTEELS R., KURIYAMA H. MEMBRANE POTENTIAL AND IONIC CONTENT IN PREGNANT AND NON-PREGNANT RAT MYOMETRIUM. J Physiol. 1965 Mar;177:263–287. doi: 10.1113/jphysiol.1965.sp007591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Casteels R. Calculation of the membrane potential in smooth muscle cells of the guinea-pig's taenia coli by the Goldman equation. J Physiol. 1969 Nov;205(1):193–208. doi: 10.1113/jphysiol.1969.sp008960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Casteels R., Droogmans G., Hendrickx H. Active ion transport and resting potential in smooth muscle cells. Philos Trans R Soc Lond B Biol Sci. 1973 Mar 15;265(867):47–56. doi: 10.1098/rstb.1973.0008. [DOI] [PubMed] [Google Scholar]
  9. Casteels R., Droogmans G., Hendrickx H. Effect of sodium and sodium-substitutes on the active ion transport and on the membrane potential of smooth muscle cells. J Physiol. 1973 Feb;228(3):733–748. doi: 10.1113/jphysiol.1973.sp010109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Casteels R., Droogmans G., Hendrickx H. Electrogenic sodium pump in smooth muscle cells of the guinea-pig's taenia coli. J Physiol. 1971 Sep;217(2):297–313. doi: 10.1113/jphysiol.1971.sp009572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Casteels R., Droogmans G., Hendrickx H. Membrane potential of smooth muscle cells in K-free solution. J Physiol. 1971 Sep;217(2):281–295. doi: 10.1113/jphysiol.1971.sp009571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Casteels R., Kitamura K., Kuriyama H., Suzuki H. The membrane properties of the smooth muscle cells of the rabbit main pulmonary artery. J Physiol. 1977 Sep;271(1):41–61. doi: 10.1113/jphysiol.1977.sp011989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Friedman S. M., Gustafson B., Friedman C. L. Characteristics of temperature-dependent sodium exchanges in a small artery. Can J Physiol Pharmacol. 1968 Jul;46(4):681–685. doi: 10.1139/y68-101. [DOI] [PubMed] [Google Scholar]
  14. GLYNN I. M. Sodium and potassium movements in human red cells. J Physiol. 1956 Nov 28;134(2):278–310. doi: 10.1113/jphysiol.1956.sp005643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Garay R. P., Garrahan P. J. The interaction of sodium and potassium with the sodium pump in red cells. J Physiol. 1973 Jun;231(2):297–325. doi: 10.1113/jphysiol.1973.sp010234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Garrahan P. J., Garay R. P. A kinetic study of the Na pump in red cells: its relevance to the mechanism of active transport. Ann N Y Acad Sci. 1974;242(0):445–458. doi: 10.1111/j.1749-6632.1974.tb19108.x. [DOI] [PubMed] [Google Scholar]
  17. Geck P., Pietrzyk C., Burckhardt B. C., Pfeiffer B., Heinz E. Electrically silent cotransport on Na+, K+ and Cl- in Ehrlich cells. Biochim Biophys Acta. 1980 Aug 4;600(2):432–447. doi: 10.1016/0005-2736(80)90446-0. [DOI] [PubMed] [Google Scholar]
  18. Haddy F. J. Potassium and blood vessels. Life Sci. 1975 May 15;16(10):1489–1497. doi: 10.1016/0024-3205(75)90065-x. [DOI] [PubMed] [Google Scholar]
  19. Hendrickx H., Casteels R. Electrogenic sodium pump in arterial smooth muscle cells. Pflugers Arch. 1974;346(4):299–306. doi: 10.1007/BF00596185. [DOI] [PubMed] [Google Scholar]
  20. Hermsmeyer K. Electrogenesis of increased norepinephrine sensitivity of arterial vascular muscle in hypertension. Circ Res. 1976 May;38(5):362–367. doi: 10.1161/01.res.38.5.362. [DOI] [PubMed] [Google Scholar]
  21. Hoffman P. G., Tosteson D. C. Active sodium and potassium transport in high potassium and low potassium sheep red cells. J Gen Physiol. 1971 Oct;58(4):438–466. doi: 10.1085/jgp.58.4.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jones A. W. Altered ion transport in vascular smooth muscle from spontaneously hypertensive rats. Influences of aldosterone, norepinephrine, and angiotensin. Circ Res. 1973 Nov;33(5):563–572. doi: 10.1161/01.res.33.5.563. [DOI] [PubMed] [Google Scholar]
  23. Jones A. W., Karreman G. Ion exchange properties of the canine carotid artery. Biophys J. 1969 Jul;9(7):884–909. doi: 10.1016/S0006-3495(69)86425-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jones A. W., Karreman G. Potassium accumulation and permeation in the canine carotid artery. Biophys J. 1969 Jul;9(7):910–924. doi: 10.1016/S0006-3495(69)86426-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jones A. W., Miller L. A. Ion transport in tonic and phasic vascular smooth muscle and changes during deoxycorticosterone hypertension. Blood Vessels. 1978;15(1-3):83–92. doi: 10.1159/000158155. [DOI] [PubMed] [Google Scholar]
  26. Jones A. W. Reactivity of ion fluxes in rat aorta during hypertension and circulatory control. Fed Proc. 1974 Feb;33(2):133–137. [PubMed] [Google Scholar]
  27. Jones A. W., Somlyo A. P., Somlyo A. V. Potassium accumulation in smooth muscle and associated ultrastructural changes. J Physiol. 1973 Jul;232(2):247–273. doi: 10.1113/jphysiol.1973.sp010268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jones A. W., Swain M. L. Chemical and kinetic analyses of sodium distribution in canine lingual artery. Am J Physiol. 1972 Nov;223(5):1110–1118. doi: 10.1152/ajplegacy.1972.223.5.1110. [DOI] [PubMed] [Google Scholar]
  29. Kamm K. E., Zatzman M. L., Jones A. W., South F. E. Effects of temperature on ionic transport in aortas from rat and ground squirrel. Am J Physiol. 1979 Jul;237(1):C23–C30. doi: 10.1152/ajpcell.1979.237.1.C23. [DOI] [PubMed] [Google Scholar]
  30. Mohrman D. E., Sparks H. V. Role of potassium ions in the vascular response to a brief tetanus. Circ Res. 1974 Sep;35(3):384–390. doi: 10.1161/01.res.35.3.384. [DOI] [PubMed] [Google Scholar]
  31. Murray P. A., Sparks H. V. The mechanism of K+-induced vasodilation of the coronary vascular bed of the dog. Circ Res. 1978 Jan;42(1):35–42. doi: 10.1161/01.res.42.1.35. [DOI] [PubMed] [Google Scholar]
  32. Rangachari P. K., Daniel E. E., Paton D. M. Regulation of cellular volume in rat myometrium. Biochim Biophys Acta. 1973 Oct 11;323(2):297–308. doi: 10.1016/0005-2736(73)90153-3. [DOI] [PubMed] [Google Scholar]
  33. SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
  34. Sachs J. R. Competitive effects of some cations on active potassium transport in the human red blood cell. J Clin Invest. 1967 Sep;46(9):1433–1441. doi: 10.1172/JCI105635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Somlyo A. P., Somlyo A. V., Shuman H. Electron probe analysis of vascular smooth muscle. Composition of mitochondria, nuclei, and cytoplasm. J Cell Biol. 1979 May;81(2):316–335. doi: 10.1083/jcb.81.2.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. TOSTESON D. C., HOFFMAN J. F. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J Gen Physiol. 1960 Sep;44:169–194. doi: 10.1085/jgp.44.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Taylor G. S., Paton D. M., Daniel E. E. Characteristics of electrogenic sodium pumping in rat myometrium. J Gen Physiol. 1970 Sep;56(3):360–375. doi: 10.1085/jgp.56.3.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Thomas R. C. Electrogenic sodium pump in nerve and muscle cells. Physiol Rev. 1972 Jul;52(3):563–594. doi: 10.1152/physrev.1972.52.3.563. [DOI] [PubMed] [Google Scholar]
  39. Wahlström B. A. Ionic fluxes in the rat portal vein and the applicability of the Goldman equation in predicting the membrane potential from flux data. Acta Physiol Scand. 1973 Nov;89(3):436–448. doi: 10.1111/j.1748-1716.1973.tb05539.x. [DOI] [PubMed] [Google Scholar]
  40. Webb R. C., Bohr D. F. Potassium relaxation of vascular smooth muscle from spontaneously hypertensive rats. Blood Vessels. 1979;16(2):71–79. [PubMed] [Google Scholar]
  41. Widdicombe J. H., Brading A. F. A possible role of linked Na and Cl movement in active Cl uptake in smooth muscle. Pflugers Arch. 1980 Jul;386(1):35–37. doi: 10.1007/BF00584184. [DOI] [PubMed] [Google Scholar]
  42. Widdicombe J. H. Ouabain-sensitive ion fluxes in the smooth muscle of the guinea-pig's taenia coli. J Physiol. 1977 Apr;266(2):235–254. doi: 10.1113/jphysiol.1977.sp011766. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES