Abstract
We have developed a technique for cannulation and internal perfusion of crayfish segmented lateral axons. Experiments on perfused and non-perfused axons lead to the following conclusions: 1. Internally perfused segmented axons behave very similarly to non-perfused axons. 2. The axial electrical resistance of the junctional region is almost as low as a comparable segment of axon. 3. Neither intracellular Ca2+ nor H+ is effective in disrupting the intercellular communication pathway in perfused axons. On the basis of these findings we have formulated a hypothesis for cellular control of intercellular coupling based on the existence of a soluble intermediate for Ca2+ or H+-induced uncoupling. This hypothesis is consistent with data from both internally perfused and non-perfused axons.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asada Y., Bennett M. V. Experimental alteration of coupling resistance at an electrotonic synapse. J Cell Biol. 1971 Apr;49(1):159–172. doi: 10.1083/jcb.49.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BAKER P. F., HODGKIN A. L., SHAW T. I. Replacement of the axoplasm of giant nerve fibres with artificial solutions. J Physiol. 1962 Nov;164:330–354. doi: 10.1113/jphysiol.1962.sp007025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Délèze J., Loewenstein W. R. Permeability of a cell junction during intracellular injection of divalent cations. J Membr Biol. 1976 Aug 27;28(1):71–86. doi: 10.1007/BF01869691. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnston M. F., Simon S. A., Ramón F. Interaction of anaesthetics with electrical synapses. Nature. 1980 Jul 31;286(5772):498–500. doi: 10.1038/286498a0. [DOI] [PubMed] [Google Scholar]
- Mittenthal J. E., Wine J. J. Segmental homology and variation in flexor motoneurons of the crayfish abdomen. J Comp Neurol. 1978 Jan 15;177(2):311–334. doi: 10.1002/cne.901770209. [DOI] [PubMed] [Google Scholar]
- Politoff A. L., Socolar S. J., Loewenstein W. R. Permeability of a cell membrane junction. Dependence on energy metabolism. J Gen Physiol. 1969 Apr;53(4):498–515. doi: 10.1085/jgp.53.4.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramón F., Zampighi G. On the electrotonic coupling mechanism of crayfish segmented axons: temperature dependence of junctional conductance. J Membr Biol. 1980 Jun 15;54(3):165–171. doi: 10.1007/BF01870232. [DOI] [PubMed] [Google Scholar]
- Rose B., Loewenstein W. R. Permeability of a cell junction and the local cytoplasmic free ionized calcium concentration: a study with aequorin. J Membr Biol. 1976 Aug 27;28(1):87–119. doi: 10.1007/BF01869692. [DOI] [PubMed] [Google Scholar]
- Shrager P. G., Macey R. I., Strickholm A. Internal perfusion of crayfish, giant axons: action of tannic acid, DDT, and TEA. J Cell Physiol. 1969 Aug;74(1):77–90. doi: 10.1002/jcp.1040740111. [DOI] [PubMed] [Google Scholar]
- Turin L., Warner A. Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo. Nature. 1977 Nov 3;270(5632):56–57. doi: 10.1038/270056a0. [DOI] [PubMed] [Google Scholar]
- WATANABE A., GRUNDFEST H. Impulse propagation at the septal and commissural junctions of crayfish lateral giant axons. J Gen Physiol. 1961 Nov;45:267–308. doi: 10.1085/jgp.45.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zampighi G., Ramón F., Durán W. Fine structure of the electrotonic synapse of the lateral giant axons in a crayfish (Procambarus clarkii). Tissue Cell. 1978;10(3):413–426. doi: 10.1016/s0040-8166(16)30337-8. [DOI] [PubMed] [Google Scholar]
- de Boer R. W., van Oosterom A. Electrical properties of platinum electrodes: impedance measurements and time-domain analysis. Med Biol Eng Comput. 1978 Jan;16(1):1–10. doi: 10.1007/BF02442925. [DOI] [PubMed] [Google Scholar]