Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1981 Aug;317:509–518. doi: 10.1113/jphysiol.1981.sp013840

Electrotonic coupling in internally perfused crayfish segmented axons.

M F Johnston, F Ramón
PMCID: PMC1246804  PMID: 6796679

Abstract

We have developed a technique for cannulation and internal perfusion of crayfish segmented lateral axons. Experiments on perfused and non-perfused axons lead to the following conclusions: 1. Internally perfused segmented axons behave very similarly to non-perfused axons. 2. The axial electrical resistance of the junctional region is almost as low as a comparable segment of axon. 3. Neither intracellular Ca2+ nor H+ is effective in disrupting the intercellular communication pathway in perfused axons. On the basis of these findings we have formulated a hypothesis for cellular control of intercellular coupling based on the existence of a soluble intermediate for Ca2+ or H+-induced uncoupling. This hypothesis is consistent with data from both internally perfused and non-perfused axons.

Full text

PDF
509

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asada Y., Bennett M. V. Experimental alteration of coupling resistance at an electrotonic synapse. J Cell Biol. 1971 Apr;49(1):159–172. doi: 10.1083/jcb.49.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BAKER P. F., HODGKIN A. L., SHAW T. I. Replacement of the axoplasm of giant nerve fibres with artificial solutions. J Physiol. 1962 Nov;164:330–354. doi: 10.1113/jphysiol.1962.sp007025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Délèze J., Loewenstein W. R. Permeability of a cell junction during intracellular injection of divalent cations. J Membr Biol. 1976 Aug 27;28(1):71–86. doi: 10.1007/BF01869691. [DOI] [PubMed] [Google Scholar]
  4. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Johnston M. F., Simon S. A., Ramón F. Interaction of anaesthetics with electrical synapses. Nature. 1980 Jul 31;286(5772):498–500. doi: 10.1038/286498a0. [DOI] [PubMed] [Google Scholar]
  6. Mittenthal J. E., Wine J. J. Segmental homology and variation in flexor motoneurons of the crayfish abdomen. J Comp Neurol. 1978 Jan 15;177(2):311–334. doi: 10.1002/cne.901770209. [DOI] [PubMed] [Google Scholar]
  7. Politoff A. L., Socolar S. J., Loewenstein W. R. Permeability of a cell membrane junction. Dependence on energy metabolism. J Gen Physiol. 1969 Apr;53(4):498–515. doi: 10.1085/jgp.53.4.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ramón F., Zampighi G. On the electrotonic coupling mechanism of crayfish segmented axons: temperature dependence of junctional conductance. J Membr Biol. 1980 Jun 15;54(3):165–171. doi: 10.1007/BF01870232. [DOI] [PubMed] [Google Scholar]
  9. Rose B., Loewenstein W. R. Permeability of a cell junction and the local cytoplasmic free ionized calcium concentration: a study with aequorin. J Membr Biol. 1976 Aug 27;28(1):87–119. doi: 10.1007/BF01869692. [DOI] [PubMed] [Google Scholar]
  10. Shrager P. G., Macey R. I., Strickholm A. Internal perfusion of crayfish, giant axons: action of tannic acid, DDT, and TEA. J Cell Physiol. 1969 Aug;74(1):77–90. doi: 10.1002/jcp.1040740111. [DOI] [PubMed] [Google Scholar]
  11. Turin L., Warner A. Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo. Nature. 1977 Nov 3;270(5632):56–57. doi: 10.1038/270056a0. [DOI] [PubMed] [Google Scholar]
  12. WATANABE A., GRUNDFEST H. Impulse propagation at the septal and commissural junctions of crayfish lateral giant axons. J Gen Physiol. 1961 Nov;45:267–308. doi: 10.1085/jgp.45.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zampighi G., Ramón F., Durán W. Fine structure of the electrotonic synapse of the lateral giant axons in a crayfish (Procambarus clarkii). Tissue Cell. 1978;10(3):413–426. doi: 10.1016/s0040-8166(16)30337-8. [DOI] [PubMed] [Google Scholar]
  14. de Boer R. W., van Oosterom A. Electrical properties of platinum electrodes: impedance measurements and time-domain analysis. Med Biol Eng Comput. 1978 Jan;16(1):1–10. doi: 10.1007/BF02442925. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES