Skip to main content
Ambio logoLink to Ambio
. 2025 Apr 24;54(11):1902–1938. doi: 10.1007/s13280-025-02179-9

How is Gaia doing? Trends in global land degradation and improvement

Zhanguo Bai 1,, Jason Daniel Russ 2, Kentaro Florian Mayr 2, David Dent 3
PMCID: PMC12480325  PMID: 40272763

Abstract

Land degradation is holding back attainment of the Sustainable Development Goals and exacerbating global heating. Land degradation and improvement since 1981 have been assessed by proxy using remotely sensed Normalised Difference Vegetation Index (NDVI), translated into net primary productivity. The quantitative data show the extent and trends of changes over four decades and identify where further action is needed. During 1981–2021, 28.5% of land was degrading—most notably through megafires in boreal forests, land clearance and cultivation in sub-Saharan Africa and the East Indies and across the steppes. The degraded area increased by 4.5% compared to 1981–2003 yet affected fewer people—1.2 billion compared to 1.5 billion. Consistent policies on sustainability increased biological productivity on 26% of land (10.5% more than 1981–2003), particularly cropland in China, India and the European Union; 2.9 billion people now live in the improved areas compared with 0.8 billion in the improving areas of 1981–2003.

Supplementary Information

The online version contains supplementary material available at 10.1007/s13280-025-02179-9.

Keywords: Carbon capture, Land degradation & improvement, NDVI, NPP, Sustainability

Introduction

Land degradation encompasses long-term decline of productivity, environmental integrity, or social value (Folke et al. 2002; Millennium Ecosystem Assessment 2005; Bai et al. 2008; Shukla et al. 2019; Grinand et al. 2020). Most of this degradation is man-made, including impoverishment of vegetation and soil erosion that diminish infiltration of rainfall and recharge of springs and groundwaters; also, nutrient depletion, salinity, sodicity and/or acidity. On a grand scale, we have seen the transformation of the Aral Sea to Aralkum Desert (Gafurova and Juliev 2021), the same actions playing out in the Murray-Darling Basin (Beasley 2021), and continuation of the Dust Bowl of the 1930s across drylands on every continent. Away from the headlines, farm by farm, year on year, these processes are driving millions of people who cannot make a living on their land to leave it—and challenge the frontiers and politics of the wealthy world. This is a global issue (McCammon 1992; Amundson et al. 2015; Borrelli et al. 2017; Olsson et al. 2019; Wang et al. 2023) looming over the Sustainable Development Goals (SDGs), in particular (1) no poverty, (2) zero hunger, (6) clean water and sanitation, (13) climate action, and (15) land degradation neutrality. Monitoring land degradation and sustainability are both necessary for informed decision-making—and challenging (Tóth et al. 2018; Zhang et al. 2018; Prince 2019; Tziolas et al. 2020).

The normalised difference vegetation index (NDVI) recorded by weather satellites measures absorption of photosynthetically active radiation and reflection of unusable heat (Yengoh et al. 2016), thereby capturing photosynthetic capacity and the intensity of life. If more is better, then increased NDVI translated into net primary productivity (NPP) provides an index of land improvement: and a decrease indicates degradation. James Lovelock’s Gaia hypothesis (1979) conceptualises Earth as a self-regulating system where biological, chemical and physical processes interact to maintain conditions favourable for life. Within this frame, NPP plays a crucial role in stabilising atmospheric composition and regulating the carbon cycle. Terrestrial and marine ecosystems constitute planetary-scale feedback by capturing and storing carbon but this activity is disrupted by human-induced land use change and soil degradation. Estimates of annual NPP vary significantly from 53.2 billion or 109 tonnes carbon (GtC) (Melillo et al. (1993) to more recent figures of 112–169 GtC (Sha et al. 2022). Effective management strategies, particularly in agricultural landscapes with big yield gaps or historic soil organic carbon losses, could enhance this natural regulatory capacity with an extra 13.7 GtC (Amelung et al. 2020; Tiefenbacher et al. 2021) and mitigate some of the impacts of anthropogenic CO2 emissions, which surpassed 10 GtC in 2021 (United Nations 2024a).

Good-practice guidance for assessing SDG indicator 15.3—the proportion of land that is degraded—considers trends in land cover, land productivity and carbon stocks (Sims et al. 2021). As a proxy for land productivity, we employ the Global Inventory Modelling and Mapping Studies (GIMMS) dataset of remotely sensed NDVI, now comprising 40 years of consistent data. NDVI has been widely applied to assess land degradation (Tucker et al. 1975; Bai et al. 2008; Bai and Dent 2009; Higginbottom and Symeonakis 2014; Yengoh et al. 2016; Kirui et al. 2021; Rivera-Marin et al. 2022; Schillaci et al. 2023), translating into leaf-area index (Myneni et al. 1997), the fraction of photosynthetically active radiation absorbed by vegetation (Asrar et al. 1984), and NPP (Alexandrov and Oikawa 1997). So, we are employing a proxy for a proxy: NDVI for NPP and NPP for land productivity. And declining NDVI or NPP does not necessarily indicate land degradation; nor does increase necessarily indicate improvement. Biological productivity depends on several factors: climate—especially rainfall, sunshine and length of growing season; land use; large-scale ecosystem disturbances such as fires; and the global increase in atmospheric carbon dioxide and active-nitrogen deposition. So, to interpret NDVI and NPP trends in terms of land degradation or improvement, we must eliminate false alarms from climatic variability and land use change. To account for variability of rainfall and, to some extent, soil characteristics, we consider, rain-use efficiency (RUE), the ratio of NPP to precipitation (Le Houérou 1984); the combination of remotely sensed NPP and station-observed rainfall has been used to assess land degradation at various scales (Prince et al. 2007; Ibrahim et al. 2015; Chen et al. 2023). We use the same principle to adjust for temperature with energy-use efficiency (EUE).

The aim of this study is to identify where sustainability investments and policies may, or may not be, succeeding (at least in terms of biological productivity), and where future efforts should be directed. Understanding land degradation trends is useful for designing effective land management strategies, and by assessing long-term changes in biological productivity, we can judge the success, or otherwise, of current policies. The updated global assessment of land degradation and improvement applies the same procedure as our 1981–2003 assessment (Bai et al 2008; Bai and Dent 2009) which was validated by field observations (Bai et al. 2005; Bai and Dent 2006; Chen and Rao 2008). By drawing on four decades of consistent data, this study supports evidence-based decision-making to achieve land degradation neutrality and other Sustainable Development Goals.

Materials and methods

We derived trends of NPP (carbon capture) at national and global levels from the GIMMS 3rd generation V1.2 (GIMMS–3G +) dataset of global NDVI measurements by the Advanced Very High-Resolution Radiometer (AVHRR) carried on polar-orbiting satellites since 1978. GIMMS compiles corrected and calibrated data from 1982 up to 2021 at a spatial resolution of 0.0833 degree. Maximum NDVI values are composited fortnightly from the sequence of AVHRR sensors, taking account of calibration loss, orbital drift and volcanic eruptions, and provided in Network Common Data format (NetCDF) (Pinzon et al. 2023). Figure 1 summarises our procedure. Some useful terms and definitions appear in Table 1.

Fig. 1.

Fig. 1

Sequences of data analyses

Table 1.

Terms and definitions

Terms Definitions Acronyms
Advanced Very High-Resolution Radiometer Instrument carried by the US National Aeronautics and Space Administration (NASA) weather satellites AVHRR
Global Inventory Modelling and Mapping Studies AVHRR dataset maintained by the University of Maryland GIMMS
Energy-Use Efficiency Ratio of annual sum NDVI to annual accumulated temperature EUE
Moderate Resolution Imaging Spectroradiometer Instrument carried by the NASA Terra and Aqua satellites MODIS
The Normalised Difference Vegetation Index Ratio of (Near Infra-red – Red) / (Near Infra-red + Red) spectral bands reflected by vegetation NDVI
Net Primary Productivity Energy stored by photosynthesis less energy used for respiration and maintenance per unit area and time NPP
Rain-Use Efficiency Ratio of annual sum NDVI to annual rainfall RUE

RUE and EUE were calculated at the same resolution as GIMMS–3G + data using monthly precipitation and temperature values since January 1981 abstracted from the University of East Anglia Climatic Research Unit Time Series (CRU TS v4.0.6) gridded at 0.5° resolution (Harris et al. 2020).

MODIS NPP data at 500 m resolution (MOD17A3HGF Version 6.1, Running and Zhao 2021) were used to translate GIMMS NDVI data to NPP by re-sampling MODIS data to the same resolution as GIMMS using nearest-neighbour assignment. Correlation between annual sum NDVI and annual NPP at pixel level was calculated for the overlapping period (2000–2021) according to the equation: y = Ax + B, where y is NPP for a given year (kgC/ha/year); x, annual sum NDVI for the given year; A, gradient or slope of the linear regression; B, intercept of the linear regression. NPP loss and gain were calculated by multiplication of multiple-year average of annual NPP (2000–2021) and percentage change of annual sum NDVI from 1981–2021. The percentage change of NDVI was calculated by 100*gradient of annual sum linear trend/multiple-year average of annual sum NDVI 1981–2021.

MODIS global NPP data for 2000–2022 were used in Fig. 2 to provide context for the changes revealed over the longer term by the GIMMS data.

Fig. 2.

Fig. 2

Mean annual NPP 2000–2022, MODIS data from Running and Zhao (2021)

Land cover The Copernicus Climate Change Service provides global land cover maps from 2016 to the present at 300 m resolution consistent with the global annual land cover maps from 1992–2015 produced by the European Space Agency Climate Change Initiative land cover project (ESA Copernicus 2023). Land cover 2020 was used to compare with identified land degradation and improvement and to mask urban areas and bare ground.

Population The Gridded Population of the World, version 4 (CIESIN 2018) provides UN World Population Projection-adjusted population count and population density at various resolutions. The gridded population counts for 2005 and 2020 at 2.5 arc-minutes resolution were compared with indices of land degradation and improvement.

Trend analysis Trends were determined by linear regression. The absolute change (∆) is the gradient of the regression; relevant or percentage change (%) is 100*(the absolute change/multiple-year average of annual sum NDVI 1981–2021). Data were tested for temporal and spatial independence following Livezy and Chen (1983). When the absolute values of the autocorrelation coefficients of lag-1 to lag-3, calculated for a time series consisting of n observations, are not larger than the typical critical value, i.e. 1.96/n corresponding to the 5% significance level, the observations in this time series can be accepted as being independent. The T–test was used to arrange the slope values in classes showing strong or weak positive or negative trends:

T=b/seb

where b is the estimated slope of the regression line between the observation values and time and se(b) represents the standard error of b.

R language (R Core Team 2023) was used for data processing, trend and correlation analysis; ESRI ArcGIS was used for statistics and map visualisation.

Degrading areas were identified, first, by a negative trend of sum NDVI. To distinguish between productivity decline caused by land degradation and declining productivity due to other factors, rainfall variability and irrigation have been accounted for by:

  1. Identifying pixels with a positive relationship between NDVI and rainfall

  2. For those pixels, RUE has been considered: where productivity declined but RUE increased, the decline of productivity was attributed to declining rainfall; those areas were masked (urban areas and bare ground were also masked)

  3. NDVI trends have been calculated for the remaining areas as RUE-adjusted NDVI: i.e., pixels where there was a negative relationship between NDVI and rainfall. NDVI trends were also calculated for pixels with positive relationship between NDVI and rainfall but declining RUE.

Improving areas were identified by: (1) a positive trend in sum NDVI and a negative correlation with rainfall; (2) a positive trend in sum NDVI and positive RUE and EUE. Again, urban areas and bare ground were masked.

Net primary productivity loss in the identified degrading areas or gain in the improving areas was calculated using the translation of NDVI into NPP. The number of people affected was estimated by overlaying the degrading or improving areas with population maps.

Results and discussion

Context

As context for considering changes in NPP, Fig. 2 shows current global land productivity. Figure 3 then shows climate-adjusted change in NDVI over the period 1981–2021 with urban and barren land masked. This is our measure of land degradation (in red) and improvement (in green). It presents a different picture from earlier assessments that compounded historical land degradation with ongoing changes (Sonneveld and Dent 2007). By focussing on data since 1981, this analysis highlights recent trends but does not capture the extent of past land degradation, much of which is irreversible.

Fig. 3.

Fig. 3

Trends in climate-adjusted annual sum NDVI, 1981–2021: top, absolute; bottom, relative

Caveats concerning global application of the data

  1. NDVI performs best as an indicator of NPP in areas with sparse to moderate vegetation cover. Under a dense canopy, additional biomass below the canopy is hidden and its increase brings no detectable change in the signal (Ripple 1985).

  2. In compiling the GIMMS database, cloud cover is screened by reading the maximum NDVI values within twice-monthly compositing periods (Pinzon et al. 2023). Even so, prolonged cloud cover may result in an underestimation of NDVI.

  3. The spatial variability of rainfall in drylands makes interpolation of point measurements problematic, and meteorological stations are sparse in many of these areas.

  4. NDVI is only a proxy. It tells us nothing about the kind of degradation or improvement. What is happening in, say, burning boreal forests is different from what happened in New Zealand when price support for agriculture was abandoned in 1984. However, because the index is mapped as a continuous surface, the drivers may be revealed by correlation with other geo-located biophysical and socio-economic data.

  5. As a measure of land degradation or improvement, loss or gain of NPP has been calculated for those areas where both NPP and RUE are declining (i.e. land degradation) or where NPP, RUE and EUE are increasing (i.e. land improvement). This is likely to be a conservative estimate since, globally, NPP has increased over the study period. However, in areas where NPP is increasing while RUE and EUE are declining, some land degradation may already be occurring, even if it is not yet reflected in declining NPP. If we only consider areas where both indices are decreasing, such early-stage degradation would go undetected. For this reason, RUE or EUE should be used alone for early warning of land degradation or a herald of improvement; otherwise, we might overlook promising interventions that increase RUE or EUE but have not yet brought about increasing NPP.

  6. Additionally, some degradation or improvement, notably concerning biodiversity and consequently resilience, is not fully captured by NPP.

We acknowledge these caveats and return to them in the Discussion and Conclusions.

Land degradation

Global analysis reveals that, over the period 1981–2021, 28.5% of land has been degrading—4.5% more than our previous assessment over 1981–2003 (Bai et al. 2008). But 26.2% of land has been improving—10.5% more than earlier. About 1.2 billion people live in the 1981–2021 degrading areas—0.3 billion less than in areas so identified earlier. Considering the global population increased by one quarter over the last 20 years (United Nations 2024b), this might be considered a positive result but can be attributed in large measure to abandonment of the land.

Table 2 lists by country areas of land degradation and improvement, NPP loss and gain, and directly affected people. Directly affected people refers to the rural population of the degraded or improved areas although, of course, city dwellers in these catchments are not unaffected, not least those recently relocated from these same areas (Tables 3 and 4).

Table 2.

Areas of land degradation and improvement, NPP loss and gain, and affected people by country between 1981 and 2021*

Country Degrading area km2 % territory % global degrading area ktC/41 years Total NPP loss LD affected people, millions % total population in degrading areas Improving area km2
Afghanistan 117 876 18.1 0.27 1763 8.8 21.4 115 033
Albania 1565 5.4 0.004 105 0.03 0.9 12 125
Algeria 49 408 2.1 0.10 883 6.1 13.6 72 409
Andorra 52 11.1 0.00 7 0.01 11.7 364
Angola 835 156 67.0 1.70 44 139 14.0 39.4 88 384
Antigua and Barbuda 0 0.0 0.00 0 0 0.0 220
Argentina 706 032 25.5 1.72 33 512 9.5 20.8 558 455
Armenia 1442 4.8 0.00 28 0.1 4.3 13 252
Australia 1 302 627 17.0 2.87 29 533 1.0 3.8 3 667 202
Austria 5011 6.0 0.02 322 0.1 1.5 23 959
Azerbaijan 16 082 18.6 0.04 652 1.7 16.3 40 306
Bahamas 3020 21.7 0.00 240 0.01 2.8 1975
Bangladesh 7083 4.9 0.01 193 5.0 3.0 110 667
Barbados 72 16.7 0.00 10 0.02 6.0 0
Belarus 12 025 5.8 0.04 405 0.6 6.5 78 854
Belgium 379 1.2 0.00 12 0.07 0.6 24 170
Belize 5372 23.4 0.01 210 0.08 20.4 11 003
Benin 21 917 19.5 0.05 107 2.5 18.7 19 947
Bhutan 12 636 26.9 0.02 514 0.3 32.4 9909
Bolivia 236 303 21.5 0.48 8729 2.2 17.6 424 512
Bosnia and Herzegovina 8379 16.4 0.02 381 0.74 21.8 18 531
Botswana 45 353 7.6 0.09 733 0.1 5.6 180 506
Brazil 2 453 800 28.8 4.97 100 658 31.8 14.8 2 451 035
Brunei 355 6.2 0.00 13 0.002 0.6 1598
Bulgaria 3104 2.8 0.01 85 0.2 2.5 10 261
Burkina Faso 121 213 44.2 0.25 174 9.5 41.9 6473
Burundi 14 010 50.3 0.03 539 6.1 47.5 5869
Cambodia 119 632 66.1 0.24 7551 9.0 53.6 40 212
Cameroon 78 044 16.4 0.15 1745 5.7 20.4 227 221
Canada 4 692 151 47.0 17.4 364 594 7.8 20.4 1 950 420
Cape Verde 1344 33.3 0.00 24 0.07 12.5 896
Central African Republic 68 612 11.0 0.14 2093 0.9 16.4 234 838
Chad 140 009 10.9 0.29 328 6.1 34.3 21 335
Chile 115 417 15.3 0.27 5593 0.9 4.6 100 782
China 1 639 469 17.1 3.93 38 041 118.9 8.3 3 449 516
Colombia 317 253 27.9 0.63 8883 7.3 14.1 491 232
Congo R 199 125 58.2 0.40 5939 2.4 39.9 90 018
Congo DR 1 641 579 70.0 3.21 69 002 56.8 57.4 368 562
Costa Rica 27 926 54.7 0.05 972 2.7 52.4 16 172
Croatia 2142 3.8 0.01 68 0.2 4.2 14 735
Cuba 11 863 10.7 0.03 415 0.9 8.1 53 180
Cyprus 612 6.6 0.00 27 0.2 14.1 4205
Czech Republic 111 0.1 0.00 0.9 0.1 0.9 50 385
Denmark 515 1.2 0.00 49 0.04 0.7 5516
Djibouti 7100 32.3 0.01 88 0.2 15.1 438
Dominica 189 25.0 0.00 7 0.01 18.1 94
Dominican Republic 7820 16.1 0.02 724 1.2 10.8 22 143
Ecuador 77 248 27.2 0.14 2981 4.2 23.4 46 559
Egypt 4858 0.5 0.01 78 8.9 8.0 16 846
El Salvador 2515 12.0 0.01 89 0.9 13.5 12 658
Equatorial Guinea 9027 32.2 0.02 236 0.2 12.4 6309
Eritrea 25 126 20.7 0.05 242 1.2 32.3 3151
Estonia 378 0.8 0.00 60 0.003 0.2 21 241
Ethiopia 442 130 39.2 0.88 19 612 60.7 49.2 136 830
Faroe Islands, DK 182 13.3 0.00 133 0.02 30.6 182
Finland 31 909 9.5 0.19 1642 0.06 1.0 191 927
France 8995 1.6 0.03 478 0.4 0.6 350 208
French Guiana, FRA 48 790 53.6 0.09 1385 0.2 49.3 15 323
Gabon 98 244 36.7 0.19 3166 0.5 22.8 83 921
Gambia 3767 33.3 0.01 42 0.7 26.5 90
Georgia 8331 12.0 0.02 355 0.5 13.0 43 817
Germany 2225 0.6 0.01 76 0.3 0.3 271 768
Ghana 56 356 23.6 0.11 1002 6.7 20.0 17 778
Greece 3614 2.7 0.01 221 0.2 1.8 33 020
Greenland, DK 117 907 28.7 0.23 1634 0.001 2.1 19 113
Grenada 0 0.0 0.00 0 0 0.0 170
Guadeloupe, FRA 125 7.7 0.00 1 0.02 3.8 501
Guatemala 41 257 37.9 0.09 2564 5.7 31.8 48 699
Guinea 32 435 13.2 0.07 406 2.3 16.4 28 088
Guinea−Bissau 3090 8.6 0.01 36 5.5 26.2 290
Guyana 100 942 47.0 0.30 631 0.1 16.3 29 140
Haiti 7667 27.6 0.02 420 1.9 16.0 9167
Honduras 19 317 17.2 0.04 1212 1.3 12.3 43 029
Hong Kong, CN 48 4.6 0.00 3 0.005 0.1 477
Hungary 2942 3.2 0.01 68 0.3 2.8 13 651
Iceland 31 414 30.5 0.12 1519 0.03 7.1 14 523
India 310 956 9.5 0.65 7523 109.8 7.8 1754 623
Indonesia 911 635 47.5 1.76 36 809 94.5 34.3 288 948
Iran 24 740 1.5 0.06 509 2.8 3.2 366 828
Iraq 8445 1.9 0.02 55 2.2 5.0 74 681
Ireland 9592 13.6 0.04 277 1.0 19.1 33 416
Isle of Man, UK 114 20.0 0.00 0.4 0.01 16.0 0
Israel 147 0.7 0.00 7 0.03 0.4 1982
Italy 9336 3.1 0.03 407 1.01 1.7 183 129
Ivory Coast 31 476 9.8 0.06 424 4.2 14.9 54 656
Jamaica 5659 51.5 0.01 216 1.2 40.7 656
Japan 52 469 13.9 0.13 2173 11.1 9.0 41 706
Jordan 2126 2.4 0.01 23 0.7 5.8 2331
Kazakhstan 1 635 500 60.2 4.74 54 230 9.2 47.5 122 081
Kenya 255 340 43.8 0.50 7612 17.2 31.8 60 455
Korea DPR 51 455 42.7 0.13 2328 12.5 48.1 57 789
Korea 8458 8.6 0.02 341 5.1 9.8 70 814
Kyrgyzstan 59 449 39.0 0.15 1994 1.9 28.0 42 992
Laos 81 911 34.6 0.17 3247 2.4 31.5 94 854
Latvia 853 1.3 0.00 19 0.04 2.1 29 048
Lebanon 574 5.5 0.00 20 0.2 3.2 2152
Lesotho 3028 10.0 0.01 83 0.1 4.6 5761
Liberia 11 255 10.1 0.02 204 0.8 15.1 3061
Libya 414 0.02 0.00 17 0.01 0.2 4642
Liechtenstein 0 0.0 0.00 0 0 0.0 160
Lithuania 1673 2.6 0.01 55 0.06 2.1 15 831
Luxembourg 0 0.0 0.00 0 0 0.0 2519
Macao, CN 0 0.0 0.00 0 0 0.0 33
Macedonia 1104 4.4 0.00 43 0.1 5.2 4677
Madagascar 232 348 39.6 0.49 18 666 8.3 27.9 81 963
Malawi 86 415 72.9 0.15 5576 13. 7 67.2 7865
Malaysia 142 823 43.3 0.28 4111 12.3 36.4 80 026
Mali 129 739 10.5 0.27 113 6.7 29.8 4203
Malta 64 20.0 0.00 2 0.01 2.7 0
Martinique, FRA 103 9.1 0.00 6 0.02 4.1 103
Mauritania 66 330 6.4 0.14 34 1.1 23.6 239
Mauritius 243 13.0 0.00 6 0.2 12.8 243
Mexico 553 719 28.1 1.19 20 787 37.6 29.5 470 049
Moldova 3212 9.5 0.01 117 0.3 9.9 8148
Mongolia 195 640 12.5 0.56 4989 0.4 13.1 284 653
Montenegro 2677 19.9 0.007 118 0.14 22.2 5746
Morocco 80 605 18.1 0.17 1727 8.2 21.9 65 532
Mozambique 519 462 64.8 1.05 36 001 21.7 65.9 41 769
Myanmar 303 529 44.7 0.63 12 474 16.6 30.6 162 436
Namibia 124 317 15.1 0.27 2099 1.1 44.2 42 419
Nepal 34 158 24.3 0.08 1132 2.6 8.4 78 921
Netherlands 625 1.5 0.00 19 0.6 3.2 21 047
New Caledonia, FRA 10 474 55.0 0.02 1528 0.09 31.5 2232
New Zealand 154 257 57.4 0.40 16 762 1.7 32.7 59 223
Nicaragua 39 423 30.4 0.08 1084 1.6 23.2 38 794
Niger 203 968 16.1 0.40 29 14.2 54.0 612
Nigeria 326 370 35.3 0.64 4216 60.1 27.5 223 356
Norway 145 127 44.8 0.63 10 635 0.8 13.9 77 977
Oman 110 0.1 0.00 0.6 0.009 0.2 2206
Pakistan 45 927 5.7 0.11 1034 12.3 5.2 275 078
Panama 25 408 32.5 0.05 580 1.8 41.9 29 808
Papua New Guinea 323 115 69.8 0.62 16 267 5.4 53.6 36 431
Paraguay 107 035 26.3 0.23 3868 1.5 22.1 55 810
Peru 284 716 22.2 0.57 7451 3.0 8.9 436 963
Philippines 50 178 16.7 0.10 1532 14.8 12.9 89 520
Poland 1593 0.5 0.01 24 0.4 0.9 122 482
Portugal 1294 1.4 0.00 75 0.2 2.1 82 587
Puerto Rico, USA 3424 37.6 0.01 197 1.0 30.3 585
Reunion, FRA 502 20.0 0.00 42 0.07 6.9 419
Romania 10 530 4.4 0.03 326 0.5 2.6 58 367
Russia 6 438 070 37.7 26.3 371 321 25.3 17.5 4 979 045
Rwanda 15 601 59.2 0.03 793 8.8 63.8 1652
San Marino 0 0.0 0.00 0 0 0.0 60
Sao Tome and Principe 273 27.3 0.00 18 0.02 7.1 0
Saudi Arabia 16 653 0.9 0.04 98 0.9 2.5 12 450
Senegal 64 738 33.0 0.13 310 6.4 36.8 1153
Serbia 4336 5.0 0.012 116 0.54 6.0 7879
Sierra Leone 11 296 15.8 0.02 196 0.8 8.9 9357
Singapore 93 14.3 0.00 2 0.7 11.0 0
Slovakia 971 2.0 0.00 36 0.1 2.7 12 397
Slovenia 786 3.9 0.00 21 0.08 3.9 1511
Solomon Islands 17 949 63.1 0.04 1047 0.3 43.3 596
Somalia 175 394 27.5 0.35 3082 3.1 17.9 63 834
South Africa 110 901 9.1 0.25 3650 5.3 8.8 469 191
Spain 14 670 2.9 0.03 733 2.7 5.6 389 260
Sri Lanka 17 570 26.8 0.04 457 3.4 15.6 11 968
Sudan 331 122 13.2 0.68 1358 13.3 28.4 375 172
Suriname 109 300 66.9 0.19 2898 0.3 53.4 13 396
Svalbard, NOR 4295 6.9 0.01 33 0.0 3.5 5391
Swaziland 1523 8.8 0.00 111 0.1 8.4 11 956
Sweden 90 842 20.2 0.38 7013 0.2 1.8 267 055
Switzerland 4396 10.7 0.01 376 0.1 1.6 31 131
Syria 15 380 8.3 0.04 312 2.3 10.4 20 091
Taiwan, CN 4191 11.7 0.01 134 1.6 6.8 15 657
Tajikistan 23 411 16.4 0.05 610 2.2 22.1 26 484
Tanzania 370 036 39.2 0.70 22 929 27.7 42.2 309 865
Thailand 123 041 23.9 0.25 3886 14.4 20.1 240 437
Togo 8826 15.5 0.01 72 1.3 14.8 4829
Trinidad and Tobago 88 1.7 0.00 2 0.06 4.2 1061
Tunisia 18 112 11.1 0.04 278 2.0 16.4 20 882
Turkey 15 771 2.0 0.04 539 3.2 3.7 464 426
Turkmenistan 69 410 14.2 0.17 603 0.7 11.0 48 733
Turks and Caicos Islands, UK 195 45.5 0.00 42 0.0 0.78 39
Uganda 84 870 36.0 0.15 3262 24.9 52.7 31 562
Ukraine 194 215 32.2 0.57 9254 9.3 23.5 239 720
UK 31 004 12.7 0.01 952 2.4 3.7 57 579
USA 2 596 936 27.0 7.13 12 026 45.1 13.3 2 717 657
Uruguay 49 526 28.0 0.12 2022 0.4 11.3 50 030
Uzbekistan 143 847 32.2 0.35 1925 7.8 22.5 37 122
Vanuatu 4883 33.1 0.01 301 0.06 18.9 111
Venezuela 243 781 26.7 0.49 10 222 2.9 10.2 346 519
Vietnam 84 207 25.6 0.17 4513 12.7 12.9 198 822
Yemen 38 009 7.2 0.06 197 4.9 14.5 1638
Zambia 519 166 69.0 1.05 26 861 13.7 68.4 38 444
Zimbabwe 148 151 37.3 0.31 6939 6.9 42.1 48 567
Total 42 452 767 28.0 100 1 674 285 1207.5 15.1 38 948 417
Country % territory % global improving area Total NPP gain ktC/41 years LI affected people, millions % total population in improving areas Net NPP gain/loss ktC/41 years
Afghanistan 17.6 0.39 2861 10.3 25.0 1097
Albania 42.2 0.03 2055 0.9 31.6 1950
Algeria 3.0 0.17 2975 6.7 15.0 2092
Andorra 77.8 0.00 44 0.05 67.0 37
Angola 7.1 0.20 2717 0.8 2.3 −41 413
Antigua and Barbuda 50.0 0.00 30 0.06 53.5 30
Argentina 20.2 1.49 20 687 5.3 11.6 −12 824
Armenia 44.5 0.04 1290 0.8 27.1 1263
Australia 47.7 8.82 153 122 5.6 21.2 123 588
Austria 28.6 0.08 4626 2.1 23.7 4303
Azerbaijan 46.5 0.11 2726 3.4 33.2 2074
Bahamas 14.2 0.00 107 0.07 1.7 −132
Bangladesh 76.9 0.25 6198 122.8 71.8 6005
Barbados 0.0 0.00 4 0 0 −6
Belarus 38.0 0.29 7762 2.3 24.6 7357
Belgium 79.2 0.08 2303 7.4 63.5 2291
Belize 47.9 0.02 590 0.2 50.1 380
Benin 17.7 0.05 889 1.5 11.6 783
Bhutan 21.1 0.02 372 0.1 18.7 −142
Bolivia 38.6 0.94 12 703 4.9 40.2 3974
Bosnia and Herzegovina 36.2 0.06 1506 0.9 27.1 1124
Botswana 30.1 0.41 15 470 1.2 45.9 14 737
Brazil 28.8 5.41 160 665 53.9 25.0 60 007
Brunei 27.7 0.00 51 0.06 12.7 38
Bulgaria 9.3 0.03 1816 0.6 8.7 1731
Burkina Faso 2.4 0.01 88 0.3 1.3 −85
Burundi 21.1 0.01 237 2.1 16.2 −301
Cambodia 22.2 0.09 2192 4.4 26.2 −5359
Cameroon 47.8 0.48 13 601 9.3 33.2 11 856
Canada 19.6 7.90 127 273 4.5 11.7 −237 320
Cape Verde 22.2 0.00 2 0.1 25.2 −21
Central African Republic 37.7 0.51 8017 1.7 31.0 5924
Chad 1.7 0.05 77 0.7 4.1 −250
Chile 13.3 0.26 5513 1.2 6.2 −79
China 36.0 9.00 32 441 759.1 53.2 286 369
Colombia 43.1 1.06 24 141 24.3 46.8 15 259
Congo R 26.3 0.20 3236 0.9 15.4 −2703
Congo DR 15.7 0.79 9972 12.5 12.6 −59 030
Costa Rica 32.0 0.04 353 0.8 16.4 −618
Croatia 26.1 0.04 1864 0.6 14.5 1796
Cuba 48.0 0.12 4342 4.4 39.7 3927
Cyprus 45.5 0.01 527 0.2 17.5 501
Czech Republic 63.9 0.17 10 193 6.0 57.0 10 193
Denmark 12.8 0.02 932 1.1 18.4 884
Djibouti 2.0 0.00 0.4 0.1 0.7 −88
Dominica 12.5 0.00 9 0.01 14.4 2
Dominican Republic 45.4 0.05 1311 3.4 30.0 587
Ecuador 16.4 0.09 3517 3.2 17.7 537
Egypt 1.7 0.04 1728 15.9 14.3 1650
El Salvador 60.2 0.03 640 3.9 62.3 552
Equatorial Guinea 22.5 0.01 276 0.2 9.1 41
Eritrea 2.6 0.01 177 0.5 14.5 −66
Estonia 47.0 0.08 3239 0.2 14.2 3179
Ethiopia 12.1 0.30 7801 7.7 6.2 −11 811
Faroe Islands, DK 13.3 0.00 4 0.002 3.3 −9
Finland 57.0 0.90 35 403 2.3 42.1 33 761
France 64.0 1.10 42 840 33.7 52.1 42 362
French Guiana, FRA 16.8 0.03 400 0.05 17.4 −986
Gabon 31.4 0.18 4535 0.4 15.1 1369
Gambia 0.8 0.00 2 0.005 0.2 −40
Georgia 62.9 0.13 6844 1.5 40.2 6489
Germany 76.1 0.92 35 536 53.1 63.7 35 459
Ghana 7.5 0.04 556 0.8 2.5 −445
Greece 25.0 0.09 5648 1.8 17.5 5427
Greenland, DK 4.7 0.04 248 0 0.6 −1385
Grenada 50.0 0.00 19 0.05 42.5 19
Guadeloupe, FRA 30.8 0.00 46 0.09 21.7 45
Guatemala 44.7 0.11 3415 8.9 50.1 851
Guinea 11.4 0.06 1799 1.6 11.3 1393
Guinea−Bissau 0.8 0.00 11 0.02 1.1 −24
Guyana 13.6 0.06 785 0.04 5.4 −1846
Haiti 33.0 0.02 490 2.9 25.4 70
Honduras 38.4 0.10 3190 3.3 31.8 1979
Hong Kong, CN 45.5 0.00 76 3.0 40.2 72
Hungary 14.7 0.04 2052 1.4 13.7 1984
Iceland 14.1 0.06 656 0.02 6.0 −863
India 53.4 3.97 99 132 815.1 57.5 91 609
Indonesia 15.1 0.61 13 240 51.6 18.7 −23 569
Iran 22.3 0.92 14 297 29.9 33.7 13 789
Iraq 17.1 0.19 1905 14.0 31.5 1850
Ireland 47.6 0.14 3082 1.9 37.5 2805
Isle of Man, UK 0.0 0.00 0.4 0 0 −0.03
Israel 9.5 0.01 187 1.2 13.6 180
Italy 60.8 0.53 23 341 25.3 42.9 22 934
Ivory Coast 17.0 0.12 3499 3.4 12.0 3075
Jamaica 6.0 0.00 42 0.09 3.1 −174
Japan 11.0 0.11 5032 8.9 7.2 2860
Jordan 2.6 0.01 76 0.9 8.4 53
Kazakhstan 4.5 0.39 6527 0.6 3.0 −47 703
Kenya 10.4 0.13 2709 4.1 7.5 −4903
Korea DPR 48.0 0.16 2652 7.8 30.1 324
Korea 71.9 0.18 5236 21.9 42.2 4895
Kyrgyzstan 21.7 0.12 2079 0.8 11.4 84
Laos 40.1 0.21 3929 2.8 37.7 682
Latvia 45.0 0.11 3855 0.5 29.4 3832
Lebanon 20.7 0.01 171 0.3 6.0 151
Lesotho 19.0 0.01 308 0.8 34.6 225
Liberia 2.8 0.01 310 0.1 2.5 106
Libya 0.3 0.01 162 0.3 4.2 145
Liechtenstein 100.0 0.00 9 0.04 100 9
Lithuania 24.3 0.07 2113 0.7 26.1 2057
Luxembourg 97.8 0.01 194 0.6 90.9 194
Macao, CN 100.0 0.00 0.4 0.5 68.1 0.4
Macedonia 18.5 0.01 691 0.5 22.0 649
Madagascar 14.0 0.19 5036 3.3 11.2 −13 630
Malawi 6.64 0.01 361 0.8 4.1 −5214
Malaysia 24.3 0.17 2109 3.3 9.7 −2002
Mali 0.3 0.01 70 0.1 0.6 −43
Malta 0.0 0.00 4 0 0 2
Martinique, FRA 9.1 0.00 9 0.04 11.9 3
Mauritania 0.02 0.00 7 0.004 0.1 −28
Mauritius 13.0 0.00 57 0.06 4.3 52
Mexico 23.8 1.10 23 882 16.0 12.5 3095
Moldova 24.1 0.03 825 0.8 24.4 708
Mongolia 18.2 0.89 14 403 1.2 35.3 9415
Montenegro 42.7 0.016 342 0.194 31.0 224
Morocco 14.7 0.15 3162 5.1 13.6 1434
Mozambique 5.2 0.09 2831 1.0 3.0 −33 170
Myanmar 23.9 0.37 7792 11.8 21.7 −4682
Namibia 5.1 0.10 3206 0.04 1.4 1107
Nepal 56.1 0.11 4005 21.2 69.4 2874
Netherlands 50.7 0.06 2205 6.8 38.5 2186
New Caledonia, FRA 11.7 0.01 214 0.02 5.5 −1314
New Zealand 22.0 0.17 4361 0.3 5.1 −12 401
Nicaragua 30.0 0.08 1926 2.1 30.4 843
Niger 0.05 0.00 0.2 0.03 0.1 −28
Nigeria 24.2 0.48 8345 48.6 22.2 4128
Norway 24.1 0.37 6606 0.9 17.2 −4029
Oman 1.0 0.01 78 0.5 11.5 78
Pakistan 34.2 0.73 5542 104.8 44.5 4508
Panama 38.1 0.06 751 1.1 24.4 172
Papua New Guinea 7.9 0.08 1578 0.6 5.5 −14 689
Paraguay 13.7 0.13 1191 0.5 7.3 −2677
Peru 34.0 0.96 18 999 7.6 22.3 11 547
Philippines 29.8 0.19 4493 19.9 17.2 2961
Poland 39.2 0.43 20 079 12.8 32.2 20 055
Portugal 89.4 0.22 11 355 6.6 64.2 11 280
Puerto Rico, USA 6.4 0.00 50 0.3 7.9 −147
Reunion, FRA 16.7 0.00 37 0.07 7.0 −5
Romania 24.6 0.18 8444 7.4 37.6 8118
Russia 29.2 22.17 467 475 43.1 29.8 96 154
Rwanda 6.3 0.00 188 0.3 2.4 −605
San Marino 100.0 0.00 5 0.02 72.0 5
Sao Tome and Principe 0.0 0.00 2 0 0 −15
Saudi Arabia 0.6 0.03 252 0.5 1.3 155
Senegal 0.6 0.00 19 0.03 0.2 −291
Serbia 9.0 0.024 311 0.49 5.5 195
Sierra Leone 13.0 0.02 622 0.9 10.1 427
Singapore 0.0 0.00 1 0 0 −0.5
Slovakia 25.4 0.04 2924 1.4 24.8 2888
Slovenia 7.5 0.01 201 0.09 4.1 180
Solomon Islands 2.1 0.00 5 0.01 1.4 −1042
Somalia 10.0 0.14 1680 1.6 8.9 −1401
South Africa 38.5 1.16 33 315 21.1 35.3 29 665
Spain 77.1 1.09 43 661 24.2 50.9 42 929
Sri Lanka 18.2 0.03 641 1.9 8.6 184
Sudan 15.0 0.84 18 905 8.9 19 17 547
Suriname 8.2 0.03 283 0.04 6.9 −2615
Svalbard, NOR 8.7 0.01 69 0.0001 4.6 37
Swaziland 68.9 0.03 1390 1.0 82.1 1279
Sweden 59.4 1.21 39 679 3.5 33.5 32 665
Switzerland 75.4 0.10 4515 6.9 78.7 4139
Syria 10.9 0.05 1222 3.8 17.0 910
Taiwan, CN 43.5 0.04 1742 6.4 26.8 1608
Tajikistan 18.5 0.07 1116 3.1 30.7 506
Tanzania 32.8 0.64 22 027 10.2 15.6 −902
Thailand 46.8 0.54 15 666 24.3 33.9 11 779
Togo 8.5 0.01 237 0.5 5.9 164
Trinidad and Tobago 20.7 0.00 51 0.3 18.3 49
Tunisia 12.8 0.05 1091 3.1 24.8 813
Turkey 59.5 1.27 54 429 34.8 40.8 53 890
Turkmenistan 10.0 0.13 1111 0.6 9.7 508
Turks and Caicos Islands, UK 9.1 0.00 12 0.0001 0.1 −31
Uganda 13.4 0.06 2240 3.6 7.6 −1022
Ukraine 39.7 0.77 16 493 13.3 33.6 7239
UK 23.5 0.19 4288 8.5 12.6 3336
USA 28.2 8.14 128 583 43.8 13.0 8324
Uruguay 28.4 0.13 2698 0.3 8.5 676
Uzbekistan 8.3 0.01 938 4.5 13.0 −987
Vanuatu 0.8 0.00 2 0.003 0.9 −299
Venezuela 38.0 0.75 15 649 12.7 44.7 5427
Vietnam 60.3 0.44 12 832 61.3 62.4 8319
Yemen 0.3 0.00 47 0.3 0.8 −149
Zambia 5.1 0.08 1363 1.0 4.8 −25 498
Zimbabwe 12.4 0.11 4550 2.1 12.7 −2389
Total 26.2 100 2 368 151 2851 35.8 6936

* Countries or regions with no degradation are not listed

Table 3.

Land degradation comparison between periods 1981–2003 and 1981–2021

Country Degrading area 1981–2003 km2 Degrading area 1981–2021 km2 Change 1981–2003 to 1981–2021 km2 Change 1981–2003 to 1981–2021 % NPP loss 1981–2003 ktC/23y NPP loss 1981–2021 ktC/41y Change 1981–2003 to 1981–2021 ktC Change 1981–2003 to 1981–2021 ktC/y Affected people 1981–2003 million Affected people 1981–2021 million Change 1981–2003 to 1981–2021 million
Afghanistan 7658 117 876 110 218 1439 63 1763 1700 40 0.7 8.8 8.1
Albania 2334 1565  − 769  − 33 47 105 58 0.5 0.1 0.03  − 0.1
Algeria 63 475 49 408  − 14 067  − 22 1977 883  − 1095  − 64 7.2 6.1  − 1.1
Andorra 281 52  − 229  − 82 3 7 5 0.1 0.02 0.01  − 0.01
Angola 828 029 835 156 7127 0.9 37 603 44 129 6527  − 559 9.3 14.0 4.8
Argentina 902 438 706 032  − 196 406  − 22 23 556 33 511 9955  − 206 14.5 9.5  − 5.0
Armenia 743 1442 699 94 14 27 13 0.1 0.08 0.1 0.04
Australia 1 994 268 1 302 627  − 691 641  − 35 46 905 29 533  − 17 371  − 1319 2.2 1.0  − 1.2
Austria 28 291 5011  − 23 280  − 823 2 322 320 8 1.7 0.1  − 1.6
Azerbaijan 2633 16 082 13 449 511 123 652 528 11 0.2 1.7 1.5
Bahamas 4130 3020  − 1110  − 27 195 239 44  − 3 0.02 0.01  − 0.01
Bangladesh 68 422 7083  − 61 339  − 90 2851 193  − 2658  − 119 72.7 5.0  − 67.7
Barbados 0 72 72 100 0 10 10 0.2 0 0.01 0.01
Belarus 4053 12 025 7972 197 82 405 33 6 0.3 0.6 0.4
Belgium 5404 379  − 5025  − 93 70 12  − 58  − 3 1.4 0.1  − 1.3
Belize 3026 5372 2346 78 66 210 144 2 0.04 0.08 0.04
Benin 14 155 21 917 7762 55 373 107  − 266  − 14 0.9 2.5 1.6
Bhutan 27 011 12 636  − 14 375  − 53 1706 514  − 1192  − 62 1.3 0.3  − 1.1
Bolivia 60 339 236 303 175 964 292 1656 8729 7073 141 1.5 2.2 0.6
Bosnia and Herzegovina 7737 8379 642 8 158 381 223 2 0.7 0.7  − 0.001
Botswana 97 831 45 353  − 52 478  − 54 4112 733  − 3378  − 161 0.5 0.1  − 0.3
Brazil 1 881 702 2 453 800 572 098 30 63 346 100 658 37 312 299 46.6 31.8  − 14.8
Brunei 2663 355  − 2308  − 87 128 13  − 115  − 5 0.3 0.02  − 0.3
Bulgaria 9139 3104  − 6035  − 66 178 85  − 93  − 6 0.9 0.2  − 0.7
Burkina Faso 9255 121 213 111 958 1209 124 174 50  − 1 1.1 9.5 8.4
Burundi 13 516 14 010 494 4 973 539  − 434  − 29 3.9 6.1 2.2
Cambodia 77 958 119 632 41 674 54 2525 7551 5026 74 3.6 9.0 5.4
Cameroon 151 605 78 044  − 73 561  − 49 9657 1745  − 7911  − 377 4.3 5.7 1.4
Canada 1 985 085 4 692 151 2 707 066 136 93 964 364 594 270 630 4807 5.5 7.8 2.3
Cape Verde 375 1344 969 258 12 24 12 0.1 0.1 0.1 0.01
Central African Republic 126 927 68 612  − 58 315  − 46 3702 2093  − 1609  − 110 0.9 0.90 0.02
Chad 52 735 140 009 87 274 166 627 328  − 299  − 19 1.0 6.1 5.0
Chile 77 230 115 417 38 187 49 1951 5592 3641 52 1.6 0.9  − 0.7
China 2 193 697 1 639 469  − 554 228  − 25 58 840 38 041  − 20 799  − 1630 457.2 118.9  − 338.3
Colombia 291 295 317 253 25 958 9 178 8883  − 9117  − 566 16.3 7.3  − 9.0
Comoros 181 0  − 181  − 100 18 0  − 18  − 1 0.1 0  − 0.1
Congo R 201 614 199 125  − 2489  − 1 20 091 594  − 14 151  − 723 1.9 2.4 0.5
Congo DR 1 346 914 1 641 579 294 665 22 3404 69 002 65 597 1535 32.1 56.8 24.7
Costa Rica 14 691 27 926 13 235 90 529 972 442 1 0.6 2.7 2.1
Croatia 2822 2142  − 680  − 24 28 68 40 0.4 0.3 0.1  − 0.2
Cuba 32 430 11 863  − 20 567  − 63 755 415  − 340  − 23 3.1 0.9  − 2.1
Cyprus 266 612 346 130 9 27 18 0.3 0.005 0.2 0.2
Czech Republic 11 218 111  − 11 107  − 99 304 1  − 303  − 13 1.4 0.1  − 1.3
Denmark 91 515 424 465 0.3 49 48 1 0.01 0.04 0.03
Djibouti 6107 7100 993 16 19 88 69 1 0.7 0.2  − 0.6
Dominica 126 189 63 50 9 7  − 2  − 0.2 0.004 0.01 0.01
Dominican Republic 18 507 7820  − 10 687  − 58 561 724 163  − 7 3.8 1.2  − 2.6
Ecuador 40 136 77 248 37 112 93 2401 2980 579  − 32 2.2 4.2 2.0
Egypt 36 514 4858  − 31 656  − 87 17 78 61 1 10.1 8.9  − 1.2
El Salvador 5585 2515  − 3070  − 55 235 89  − 146  − 8 1.1 0.9  − 0.3
Equatorial Guinea 15 376 9027  − 6349  − 41 1435 236  − 1198  − 57 0.2 0.2  − 0.04
Eritrea 15 573 25 126 9553 61 33 242 209 4 0.2 1.2 1.0
Estonia 423 378  − 45  − 10 4 60 56 1 0.009 0.003  − 0.006
Ethiopia 296 812 442 130 145 318 49 14 276 19 612 5336  − 142 20.7 60.7 40.0
Faroe Islands, DK 0 182 182 100 0 13 13 0.3 0 0.02 0.02
Falkland Islands 1635 0  − 1635  − 100 51 0  − 51  − 2 0.0004 0  − 0.0004
Finland 27 779 31 909 4130 15 328 1642 1314 26 0.2 0.06  − 0.1
France 46 691 8995  − 37 696  − 81 605 478  − 127  − 15 6.2 0.4  − 5.8
French Guiana, FRA 24 947 48 790 23 843 96 1033 1385 352  − 11 0.03 0.2 0.1
Gabon 172 865 98 244  − 74 621  − 43 23 3166 3143 76 0.5 0.5 0.07
Gambia 1396 3767 2371 169 26 42 16  − 0.1 0.03 0.07 0.07
Georgia 5647 8331 2684 48 141 355 214 3 0.6 0.5  − 0.1
Germany 32 479 2225  − 30 254  − 93 730 76  − 654  − 30 5.7 0.3  − 5.4
Ghana 50 365 56 356 5991 12 2521 1002  − 1519  − 85 4.5 6.7 2.2
Greece 6914 3614  − 3300  − 48 117 221 104 0.3 0.7 0.2  − 0.5
Greenland, DK 0 117 907 117 907 100 0 1634 1634 40 0 0.001 0.001
Guadeloupe, FRA 0 125 125 100 0 1 1 0.03 0 0.01 0.01
Guatemala 55 884 41 257  − 14 627  − 26 2867 2564  − 303  − 62 3.9 5.7 1.7
Guinea 91 415 32 435  − 58 980  − 65 2008 406  − 1602  − 8 4.1 2.2  − 1.8
Guinea − Bissau 18 851 3090  − 15 761  − 84 452 36  − 416  − 19 0.5 0.6 0.02
Guyana 93 448 100 942 7494 8 230 2631 2401 54 0.2 0.1  − 0.07
Haiti 11 821 7667  − 4154  − 35 383 420 37  − 6 2.8 1.9  − 1.0
Honduras 30 145 19 317  − 10 828  − 36 1451 1212  − 239  − 34 1.7 1.3  − 0.4
Hong Kong CN 0 48 48 100 0 3 3 0.07 0 5.1 5.1
Hungary 31 398 2942  − 28 456  − 91 766 68  − 697  − 32 2.8 0.3  − 2.5
Iceland 34 483 31 414  − 3069  − 9 2693 1519  − 1174  − 80 0.06 0.03  − 0.03
India 592 498 310 956  − 281 542  − 48 22 484 7523  − 14 960  − 794 177.4 109.8  − 67.7
Indonesia 1 028 942 911 635  − 117 307  − 11 67 680 36 810  − 30 870  − 2045 86.7 94.5 7.8
Iran 29 190 24 740  − 4450  − 15 282 509 226 0.1 2.6 2.8 0.2
Iraq 28 000 8445  − 19 555  − 70 1030 55  − 975  − 43 1.7 2.2 0.5
Ireland 6416 9592 3176 50 1363 277  − 1086  − 53 0.7 0.9 0.3
Isle of Man, UK 0 114 114 100 0 0.4 0.4 0.01 0 0.01 0.01
Israel 3085 147  − 2938  − 95 50 7  − 43  − 2 2.0 0.03  − 2.0
Italy 28 693 9336  − 19 357  − 68 696 407  − 289  − 20 4.3 1.0  − 3.3
Ivory Coast 117 595 31 476  − 86 119  − 73 6221 424  − 5797  − 260 6.3 4.2  − 2.1
Jamaica 3372 5659 2287 68 107 216 108 0.6 0.7 1.1 0.4
Japan 130 563 52 469  − 78 094  − 60 427 2173  − 2096  − 133 29.7 11.1  − 18.6
Jordan 13 574 2126  − 11 448  − 84 101 23  − 78  − 4 1.6 0.7  − 0.9
Kazakhstan 487 083 1 635 500 1 148 417 236 5308 54 230 48 922 1092 2.1 9.2 7.1
Kenya 104 994 255 340 150 346 143 6613 7612 999  − 102 11.8 17.2 5.4
Korea DPR 60 959 51 455  − 9504  − 16 2206 2328 122  − 39 10.1 12.5 2.4
Korea 54 091 8458  − 45 633  − 84 1571 340  − 1231  − 60 14.4 5.1  − 9.3
Kyrgyzstan 23 189 59 449 36 260 156 282 1994 1712 36 0.7 1.9 1.2
Laos 133 395 81 911  − 51 484  − 39 7233 3247  − 3986  − 235 3.3 2.4  − 0.9
Latvia 4416 853  − 3563  − 81 136 19  − 117  − 5 0.2 0.04  − 0.2
Lebanon 704 574  − 130  − 19 2 19 17 0.4 0.1 0.2 0.05
Lesotho 10 344 3028  − 7316  − 71 485 83  − 402  − 19 0.9 0.1  − 0.8
Liberia 50 500 11 255  − 39 245  − 78 2098 204  − 1894  − 86 1.4 0.8  − 0.6
Libya 12 672 414  − 12 258  − 97 86 17  − 69  − 3 0.4 0.01  − 0.4
Lithuania 2664 1673  − 991  − 37 55 55 10  − 1 0.1 0.06  − 0.07
Macedonia 1757 1104  − 653  − 37 33 43 10  − 0.4 0.03 0.1 0.08
Madagascar 163 843 232 348 68 505 42 6678 18 666 11 987 165 3.9 8.3 4.4
Malawi 30 869 86 415 55 546 179 1371 5576 4205 76 2.5 13.7 11.2
Malaysia 175 817 142 823  − 32 994  − 19 9258 4111  − 5147  − 302 10.4 12.3 1.9
Mali 35 637 129 739 94 102 264 358 113  − 245  − 13 0.9 6.7 5.9
Malta 0 64 64 100 0 2 21 0.05 0 0.01 0.01
Martinique, FRA 0 103 103 100 0 6 6 0.1 0 0.02 0.02
Mauritania 6301 66 330 60 029 953 18 34 16 0.06 0.07 1.1 1.1
Mauritius 0 243 243 100 0 6 6 0.1 0 0.2 0.2
Mexico 487 804 553 719 65 915 14 23 871 20 787  − 3084  − 531 36.2 37.6 1.4
Moldova 1751 3212 1462 84 32 117 85 1 0.1 0.3 0.2
Mongolia 66 559 195 640 129 081 194 624 4989 4365 95 0.07 0.4 0.4
Montenegro 4513 2677  − 1836  − 40.7 673 118 51  − 52 0.2 0.14  − 0.08
Morocco 67 399 80 605 13 206 19 2808 1727  − 1081  − 80 11.3 8.2  − 3.1
Mozambique 226 567 519 462 292 895 129 8398 36 001 27 603 513 5.2 21.7 16.6
Myanmar 358 887 303 529  − 55 358  − 15 23 625 12 474  − 11 151  − 723 23.6 16.6  − 7.1
Namibia 288 945 124 317  − 164 628  − 57 6388 2099  − 4289  − 225 0.7 1.1 0.5
Nepal 54 704 34 158  − 20 546  − 38 2375 1132  − 1243  − 76 13.3 2.6  − 10.8
Netherlands 7051 625  − 6426  − 91 92 19  − 73  − 4 2.8 0.6  − 2.2
New Caledonia, FRA 6902 10 474 3572 52 1008 1528 520  − 7 0.05 0.09 0.04
New Zealand 147 014 154 257 7243 5 6993 16 762 9769 105 1.0 1.7 0.7
Nicaragua 47 223 39 423  − 7800  − 17 2060 1084  − 976  − 63 1.7 1.6  − 0.1
Niger 22 563 203 968 181 405 804 142 29  − 113  − 5 0.8 14.2 13.3
Nigeria 91 443 326 370 234 927 257 3067 4216 1149  − 31 17.0 60.1 43.0
Norway 57 109 145 127 88 018 154 1213 10 635 9422 207 0.4 0.8 0.4
Oman 419 110  − 309  − 74 3 0.06  − 3  − 0.1 0.002 0.009 0.007
Pakistan 20 644 45 927 25 283 123 236 1034 798 15 5.8 12.3 6.5
Panama 8735 25 408 16 673 191 514 580 66  − 8 0.2 1.8 1.6
Papua New Guinea 205 500 323 115 117 615 57 16 275 16 267  − 8  − 311 2.0 5.4 3.4
Paraguay 66 704 107 035 40 331 61 1659 3868 2209 22 4.1 1.5  − 2.6
Peru 197 211 284 716 87 505 44 11 415 7451  − 3964  − 315 3.0 3.0 0.03
Philippines 132 275 50 178  − 82 097  − 62 4100 1532  − 2568  − 141 33.1 14.8  − 18.2
Poland 41 514 1593  − 39 921  − 96 891 24  − 867  − 38 5.5 0.4  − 5.1
Portugal 11 536 1294  − 10 242  − 89 233 75  − 159  − 8 0.4 0.2  − 0.2
Puerto Rico, USA 436 3424 2988 684 19 197 178 4 0.1 1.0 0.9
Reunion, FRA 175 502 327 186 6 42 358 1 0.04 0.07 0.03
Romania 16 902 10 530  − 6372  − 38 364 326  − 38  − 8 1.0 0.5  − 0.5
Russia 2 802 060 6 438 070 3 636 010 130 56 663 371 321 314 658 6593 8.6 25.3 16.7
Rwanda 11 404 15 601 4197 37 1053 793  − 260  − 26 3.3 8.8 5.5
Sao Tome and Principe 125 273 148 118 30 17  − 13  − 1 0.03 0.02  − 0.01
Saudi Arabia 8327 16 653 8326 100 4 98 93 2 0.5 0.9 0.4
Senegal 34 655 64 738 30 083 87 409 310  − 988  − 10 2.1 6.4 4.3
Serbia 5438 4336  − 1102  − 20.3 105 116 11  − 1743 0.46 0.54 0.07
Sierra Leone 35 902 11 296  − 24 606  − 69 1508 196  − 1312  − 61 2.1 0.8  − 1.3
Singapore 243 93  − 150  − 62 6 2  − 4  − 0.2 2.0 0.7  − 1.31
Slovakia 5066 971  − 4095  − 81 111 36  − 75  − 4 0.4 0.1  − 0.2
Slovenia 2492 786  − 1706  − 69 38 21  − 17  − 1 0.4 0.08  − 0.3
Solomon Islands 9065 17 949 8884 98 629 1047 419  − 2 0.2 0.3 0.1
Somalia 52 520 175 394 122 874 234 1834 3082 1248  − 5 1.5 3.1 1.6
South Africa 426 615 110 901  − 315 714  − 74 23 123 3650  − 19 473  − 916 20.5 5.3  − 15.3
Spain 63 266 14 670  − 48 596  − 77 1713 733  − 980  − 57 2.4 2.7 0.3
Sri Lanka 21 057 17 570  − 3487  − 17 635 457  − 178  − 16 4.8 3.4  − 1.4
Sudan 166 031 331 122 165 091 99 3628 1358  − 2270  − 125 3.3 13.3 10.0
Suriname 50 503 109 300 58 797 116 2102 2898 795  − 21 0.04 0.3 0.3
Svalbard, NOR 0 4295 4295 100 0 33 33 1 0 0.00 0.00
Swaziland 16 533 1523  − 15 010  − 91 1227 111  − 1116  − 51 0.9 0.1  − 0.9
Sweden 78 964 90 842 11 878 15 1594 7013 5419 102 0.8 0.2  − 0.6
Switzerland 4982 4396  − 586  − 12 106 376 269 5 0.5 0.1  − 0.2
Syria 11 327 15 380 4053 36 224 312 88  − 2 1.2 2.3 1.0
Taiwan, CN 0 4191 4191 0 134 134 3 0 1.6 1.6
Tajikistan 8412 23 411 14 999 178 104 610 506 10 0.2 2.2 2.0
Tanzania 386 256 370 036  − 16 220  − 4 22 604 22 929 325  − 424 15.3 27.7 12.4
Thailand 309 245 123 041  − 186 204  − 60 15 991 3886  − 12 104  − 600 37.0 14.4  − 22.6
Togo 11 064 8826  − 2238  − 20 299 72  − 227  − 11 0.7 1.3 0.7
Trinidad and Tobago 675 88  − 587  − 87 113 1  − 112  − 5 0.07 0.06  − 0.01
Tunisia 12 476 18 112 5636 45 398 278  − 120  − 11 1.5 2.0 0.5
Turkey 30 851 15 771  − 15 080  − 49 453 539 86  − 7 3.6 3.2  − 0.4
Turkmenistan 1273 69 410 68 137 5351 8 603 595 14 0.02 0.7 0.7
Turks and Caicos Islands, UK 92 195 103 111 16 42 26 0.3 0.00 0.00 0.00
Uganda 41 506 84 870 43 364 105 1513 3261 1748 14 4.1 24.9 20.8
Ukraine 47 414 194 215 146 801 310 1048 9254 8206 180 2.5 9.3 6.9
UK 23 506 31 004 7498 32 262 952 690 12 3.3 2.5  − 0.9
USA 1 983 886 2 596 936 613 050 31 39 673 120 259 80 586 1208 31.1 45.1 14.0
Uruguay 87 566 49 526  − 38 040  − 43 1875 2022 147  − 32 1.1 0.4  − 0.7
Uzbekistan 5974 143 847 137 873 2308 124 1925 1801 42 0.6 7.8 7.2
Vanuatu 2210 4883 2673 121 5 301 296 7 0.02 0.06 0.04
Venezuela 207 916 243 781 35 865 17 520 10 222 9702 227 2.2 2.9 0.7
Vietnam 134 026 84 207  − 49 819  − 37 343 4513 4170 95 28.1 12.7  − 15.4
Yemen 14 422 38 009 23 587 164 8 196 189 4 0.5 4.9 4.4
Zambia 454 630 519 166 64 536 14 19 900 26 861 6960  − 210 5.8 13.7 7.9
Zimbabwe 180 125 148 151  − 31 974  − 18 8862 6939  − 1923  − 216 5.4 6.9 1.4
Total 35 058 104 42 452 767 7 394 663 21 955 221 1 674 285 719 064  − 695 1537.7 1207.5  − 330.2

Table 4.

Land improvement comparison between 1981–2003 and 1981–2021*

Country/
region
Improving area
1981–2003
km2
Improving area 1981–2021
km2
Change 1981–2003 to 1981–2021
km2
Change
1981–2003 to 1981–2021
%
NPP gain 1981–2003
ktC/23y
NPP gain 1981–2021
ktC/41y
Change
1981–2003 to 1981–2021
Change 1981–2003 to 1981–2021 ktC/y
ktC
Affected people 1981–2003
million
Affected people 1981–2021
million
Change 1981–2003 to 1981–2021
million
Afghanistan 214 584 115 033  − 99 551  − 46 52.6 2860.7 2809.1 67.5 13.3 10.3  − 3.0
Albania 2815 12 125 9310 330 1.7 2055.2 2053.5 50.1 0.6 0.9 0.3
Algeria 60 359 72 409 12 050 20 14.9 2974.7 2959.8 71.9 3.9 6.8 2.9
Andorra 0 364 364 100 0 44.4 44.4 1.1 0 0.05 0.05
Angola 40 653 88 384 47 731 117 19.3 2717.3 2698.0 65.4 1.2 0.8  − 0.4
Antigua and Barbuda 0 220 220 100 0 29.6 29.6 0.7 0 0.05 0.05
Argentina 499 109 558 455 59 346 12 237.1 20 687.3 20 450.3 494.3 2.6 5.3 2.7
Armenia 1906 13 252 11 346 595 1.3 1290.5 1289.2 31.4 0.2 0.8 0.6
Australia 1 627 934 3 667 202 2 039 268 125 911.0 153 121.7 152 210.7 3695.0 3.0 5.6 2.6
Austria 1807 23 959 22 152 1226 134.6 4625.8 4624.4 112.8 0.2 2.1 2.0
Azerbaijan 848 40 306 39 458 4656 0.4 2725.6 2725.2 66.5 0.2 3.4 3.3
Bahamas 0 1975 1975 100 0 107.5 107.5 2.6 0 0.007 0.007
Bahrain 311 0  − 311  − 100 0 0 0 0 0.03 0  − 0.03
Bangladesh 6487 110 667 104 180 1606 2.7 6197.7 6195.0 151.0 5.3 122.8 117.6
Belarus 122 831 78 854  − 43 977  − 36 93.5 7762.3 7668.8 185.3 4.7 2.3  − 2.3
Belgium 0 24 170 24 170 100 0 2302.8 2302.8 56.2 0 7.4 7.4
Belize 2316 11 003 8687 375 1.0 590.3 589.3 14.4 0.02 0.2 0.2
Benin 50 213 19 947  − 30 266  − 60 45.9 889.2 843.4 19.7 2.8 1.5  − 1.2
Bhutan 355 9909 9554 2692 0.9 372.0 371.1 9.0 0.03 0.1 0.1
Bolivia 244 382 424 512 180 130 74 78.9 12 703.4 12 624.6 306.4 2.4 4.9 2.5
Bosnia and Herzegovina 47 18 531 18 484 39 127 0 1505.8 1505.8 36.7 0.006 0.9 0.9
Botswana 376 664 180 506  − 196 158  − 52 176.4 15 470.3 15 293.9 369.7 0.7 1.2 0.5
Brazil 1 659 571 2 451 035 791 464 48 148.0 160 665.2 159 185.2 3854.3 21.3 53.9 32.6
Brunei 0 1598 1598 100 0 51.1 51.1 1.2 0 0.06 0.06
Bulgaria 37 092 10 261  − 26 831  − 72 20.4 1815.8 1795.4 43.4 2.3 0.6  − 1.7
Burkina Faso 97 636 6473  − 91 163  − 93 73.0 88.2 15.2  − 1.0 3.9 0.3  − 3.6
Burundi 2007 5869 3862 192 1.1 237.3 236.1 5.7 0.6 2.1 1.5
Cambodia 4269 40 212 35 943 842 2.1 2192.3 2190.2 53.4 0.2 4.4 4.2
Cameroon 72 839 227 221 154 382 212 72.4 13 601.4 13 529.0 328.6 2.3 9.3 7.0
Canada 671 781 1 950 420 1 278 639 190 300.2 127 273.4 126 973.2 3091.2 1.4 4.5 3.1
Cape Verde 0 896 896 100 0 2.5 2.5 0.06 0 0.1 0.1
Central African Republic 73 564 234 838 161 274 219 39.8 8017.3 7977.5 193.8 0.4 1.7 1.3
Chad 72 762 21 335  − 51 427  − 71 37.3 77.2 39.9 0.3 1.0 0.7  − 0.3
Chile 177 982 100 782  − 77 200  − 43 246.0 5513.0 5266.9  − 123.8 1.4 1.2  − 0.2
China 807 802 3 449 516 2 641 714 327 316.7 324 410.6 324 093.8 7898.7 94.9 759.1 664.2
Colombia 241 729 491 232 249 503 103 262.8 24 141.4 23 878.6 577.4 4.4 24.3 19.9
Comoros 98 0  − 98  − 100 0.1 0  − 0.1  − 0.004  − .03 0  − 0.03
Congo DR 195 400 368 562 173 162 89 148.9 9971.7 9822.8 236.7 5.3 12.5 7.2
Congo R 41 940 90 018 48 078 115 32.1 3235.9 3203.7 77.5 0.3 0.9 0.6
Costa Rica 5526 16 172 10 646 193 724.1 353.4 346.1 8.3 0.3 0.8 0.5
Croatia 1098 14 735 13 637 1242 0.8 1864.2 1863.4 45.4 0.1 0.6 0.5
Cuba 1417 53 180 51 763 3653 0.4 4341.7 4341.3 105.9 0.08 4.4 4.4
Cyprus 345 4205 3860 1120 0.09 527.2 527.2 12.9 0.02 0.2 0.2
Czech Republic 6175 50 385 44 210 716 4.4 10 194.0 10 189.1 248.4 0.8 6.0 5.1
Denmark 356 5516 5160 1451 0.2 932.4 932.1 22.7 0.02 1.1 1.1
Djibouti 6581 438  − 6143  − 93 1.5 0.4  − 1.1  − 0.06 0.05 0.007  − 0.04
Dominica 68 94 26 38 0.1 8.6 8.5 0.2 0.004 0.01 0.01
Dominican Republic 1529 22 143 20 614 1348 0.7 1310.8 1310.0 31.9 0.2 3.4 3.1
Ecuador 28 133 46 559 18 426 66 58.8 3517.5 3458.7 83.2 2.1 3.2 1.1
Egypt 3158 16 846 13 688 433 1.5 1728.2 1726.8 42.1 1.4 15.9 14.5
El Salvador 1870 12 658 10 788 577 1.0 640.2 639.2 15.6 0.3 3.9 3.7
Equatorial Guinea 3377 6309 2932 87 3.5 276.3 272.8 6.6 0.06 0.2 0.09
Eritrea 9792 3151  − 6641  − 68 7.7 176.7 169.0 4.0 0.9 0.5  − 0.4
Estonia 5239 21 241 16 002 305 2.7 3238.7 3236.0 78.9 0.09 0.2 0.1
Ethiopia 306 748 136 830  − 169 918  − 55 166.3 7800.6 7634.3 183.0 7.1 7.7 0.6
Faroe Islands, DK 0 182 182 100 0 4.0 4.0 0.1 0 0.002 0.002
Finland 433 191 927 191 494 44 250 0.09 35 402.6 35 402.5 863.5 0.02 2.3 2.3
France 7296 350 208 342 912 4700 4.3 42 839.9 42 835.5 1044.7 0.5 33.7 33.2
French Guiana 4140 15 323 11 183 270 4.2 399.8 395.6 9.6 0.01 0.05 0.04
Gabon 32 999 83 921 50 922 154 27.4 4534.7 4507.3 109.4 0.5 0.4  − 0.2
Gambia 4454 90  − 4364  − 98 1.7 1.7 0.005  − 0.03 0.6 0.05  − 0.5
Georgia 5076 43 817 38 741 763 4.3 6843.6 6839.3 166.7 0.7 1.5 0.8
Germany 4182 271 768 267 586 6398 2.3 35 535.8 35 533.5 866.6 0.6 53.1 52.5
Ghana 101 775 17 778  − 83 997  − 83 79.0 556.3 477.3 10.1 6.8 0.8  − 5.9
Greece 8188 33 020 24 832 303 3.2 5647.9 5644.8 137.6 0.7 1.8 1.1
Greenland DK 0 19 113 19 113 100 0 248.5 248.5 6.1 0 0.0003 0.0003
Grenada 0 170 170 100 0 19.4 19.4 0.4 0 0.05 0.05
Guadeloupe FRA 0 501 501 100 0 45.7 45.7 1.1 0 0.09 0.09
Guatemala 2098 48 699 46 601 2222 1.0 3415.3 3414.3 83.3 0.07 8.9 8.9
Guinea 25 842 28 088 2246 9 11.9 1799.4 1787.5 43.4 0.7 1.6 0.8
Guinea−Bissau 4181 290  − 3891  − 93 1.3 11.5 10.2 0.2 0.1 0.02  − 0.09
Guyana 24 388 29 140 4752 20 41.0 785 4 744.6 17.4 0.04 0.04 0.003
Haiti 898 9167 8269 921 0.3 490.0 489.7 11.9 0.2 2.9 2.7
Honduras 9022 43 029 34 007 377 3.2 3190.3 3187.2 77.7 0.4 3.3 2.9
Hong Kong CN 0 477 477 100 0 75.6 75.6 1.8 0 3.0 3.0
Hungary 5519 13 651 8132 147 2.9 2052.3 2049.4 49.9 0.7 1.4 0.7
Iceland 1596 14 523 12 927 810 0.3 655.6 655.3 16.0 0.001 0.02 0.02
India 1 092 674 1 754 623 661 949 61 594.8 99 132.0 98 537.3 2392.0 279.4 815.1 535.7
Indonesia 182 690 288 948 106 258 58 95.3 13 240.5 13 145.2 318.8 18.0 51.6 33.6
Iran 186 294 366 828 180 534 97 44.5 14 297.3 14 252.7 346.8 9.3 29.9 20.5
Iraq 50 623 74 681 24 058 48 20.0 1904.9 1884.9 45.6 7.7 14.0 6.3
Ireland 40 33 416 33 376 83 018 0.02 3081.7 3081.7 75.2 0.002 1.9 1.9
Israel 61 1982 1921 3168 0.06 187.1 187.1 4.6 0.003 1.2 1.2
Italy 29 068 183 129 154 061 530 20.5 23 340.9 23 320.4 568.4 3.7 25.3 21.6
Ivory Coast 0 54 656 54 656 100 0 3498.9 3498.9 85.3 0 3.4 3.4
Jamaica 131 656 525 401 0.1 41.7 41.6 1.0 0.03 0.09 0.06
Jammu and Kashmir 4050 0  − 4050  − 100 6.3 0  − 6.3  − 0.3 1.8 0  − 1.8
Japan 1793 41 706 39 913 2226 1.1 5032.4 5031.26 122.7 0.2 8.9 8.7
Jordan 786 2331 1545 197 0.2 76.3 76.1 1.9 0.2 0.9 0.8
Kazakhstan 667 838 122 081  − 545 757  − 82 147.1 6527.4 6380.3 152.8 3.9 0.6  − 3.3
Kenya 317 890 60 455  − 257 435  − 81 313.8 2709.0 2395.3 52.4 5.1 4.1  − 1.1
Korea DPR 306 57 789 57 483 18 770 0.08 2652.2 2652.1 64.7 0.07 7.8 7.8
Korea 0 70 814 70 814 100 0 5235.9 5235.9 127.7 0 21.9 21.9
Kyrgyzstan 37 397 42 992 5595 15 17.4 2078.5 2061.1 49.9 0.5 0.8 0.2
Laos 4573 94 854 90 281 1974 4.1 3929.0 3924.9 95.7 0.08 2.8 2.8
Latvia 31 343 29 048  − 2295  − 7 19.2 3854.8 3835.6 93.3 0.6 0.5  − 0.07
Lebanon 2433 2152  − 281  − 12 1.4 170.5 169.1 4.1 0.3 0.3 0.06
Lesotho 6423 5761  − 662  − 10 1.8 307.9 306.1 7.4 0.6 0.8 0.2
Liberia 6724 3061  − 3663  − 55 7.5 310.2 302.72 7.2 0.4 0.1  − 0.3
Libya 8454 4642  − 3812  − 45 1.7 162.2 160.5 3.9 0.9 0.3  − 0.6
Liechtenstein 0 160 160 100 0 8.6 8.6 0.2 0 0.04 0.04
Lithuania 21 661 15 831  − 5830  − 27 14.6 2112.5 2097.9 50.9 0.8 0.7  − 0.04
Luxembourg 0 2519 2519 100 0 194.4 194.4 4.7 0 0.6 0.6
Macao, CN 0 33 33 100 0 0.4 4.1 0.01 0 0.5 0.5
Macedonia 2242 4677 2435 109 1.1 691.4 690.3 16.8 0.2 0.5 0.2
Madagascar 63 548 81 963 18 415 29 26.8 5036.1 5009.3 121.7 1.2 3.3 2.1
Malawi 13 698 7865  − 5833  − 43 4.2 361.4 357.2 8.6 1.7 0.8  − 0.9
Malaysia 15 933 80 026 64 093 402 13.7 2108.7 2095.0 50.8 0.6 3.3 2.7
Mali 205 629 4203  − 201 426  − 98 89.9 69.8  − 20.1  − 2.2 5.4 0.1  − 5.2
Martinique, FRA 0 103 103 100 0 8.6 8.6 0.2 0 0.04 0.04
Mauritania 2300 239  − 2061  − 90 0.4 6.5 6.1 0.1 0.04 0.004  − .04
Mauritius 321 243  − 78  − 24 0.2 57.5 57.3 1.4 0.2 0.06  − 0.1
Mexico 225 347 470 049 244 702 109 78.7 23 881.6 23 802.9 579.1 5.8 16.0 10.1
Moldova 20 350 8148  − 12 202  − 60 11.2 825.2 814.0 19.6 2.1 0.8  − 1.3
Mongolia 213 697 284 653 70 956 33 78.2 14 403.4 14 325.2 347.9 0.2 1.2 1.0
Montenegro 0 5746 5746 100 0 342 342 8.3 0 0.19 0.19
Morocco 94 552 65 532  − 29 020  − 31 34.6 3161.8 3127.1 75.6 6.8 5.1  − 1.7
Mozambique 153 790 41 769  − 112 021  − 73 54.9 2831.0 2776.0 66.7 4.1 1.0  − 3.1
Myanmar 24 292 162 436 138 144 569 19.8 7792.3 7772.5 189.2 1.1 11.8 10.7
Namibia 130 240 42 419  − 87 821  − 67 50.6 3205.9 3155.2 76.0 0.2 0.04  − 0.1
Nepal 4605 78 921 74 316 1613 3.2 4005.4 4002.2 97.6 0.8 21.2 20.4
Netherlands 0 21 047 21 047 100 0 2205.2 2205.2 53.8 0 6.8 6.8
New Caledonia FRA 810 2232 1422 176 0.9 214.1 213.2 5.2 0.005 0.02 0.01
New Zealand 7735 59 223 51 488 666 4.3 4360.8 4356.5 106.2 0.03 0.3 0.2
Nicaragua 14 305 38 794 24 489 171 6.5 1926.4 1919.8 46.7 0.5 2.1 1.6
Niger 101 911 612  − 101 299  − 99 23.4 0.2  − 23.2  − 1.0 1.8 0.03  − 1.8
Nigeria 160 792 223 356 62 564 39 150.5 8344. 5 8194.0 197.0 22.0 48.6 26.6
Norway 16 739 77 977 61 238 366 7.0 6606.0 6598.9 160.8 0.07 0.9 0.9
Oman 9922 2206  − 7716  − 77 1.4 78.3 76.9 1.8 0.4 0.5 0.1
Pakistan 291 709 275 078  − 16 631  − 6 90.2 5542.3 5452.0 131.3 68.5 104.8 36.3
Panama 20 843 29 808 8965 43 15.5 751.5 736.0 17.6 0.7 1.1 0.4
Papua New Guinea 64 377 36 431  − 27 946  − 43 28.2 1578.4 1550.1 37.3 0.8 0.6  − 0.3
Paraguay 91 068 55 810  − 35 258  − 39 40.8 1191.3 1150.5 27.3 0.4 0.5 0.08
Peru 272 800 436 963 164 163 60 405.4 18 998.5 18 593.1 445.8 3.7 7.6 3.9
Philippines 7410 89 520 82 110 1108 3.3 4493.0 4489.7 109.4 1.4 19.9 18.5
Poland 13 110 122 482 109 372 834 8.6 20 079.0 20 070.4 489.4 1.0 12.8 11.8
Portugal 265 82 587 82 322 31 009 0.2 11 354.6 11 354.4 276.9 0.1 6.6 6.5
Puerto Rico, USA 548 585 37 7 0.2 50.4 50.1 1.2 0.09 0.3 0.2
Qatar 243 0  − 243  − 100 0.004 0  − 0.004  − 0.15 0.004 0  − 0.004
Reunion, FRA 152 419 267 175 0.2 36.5 36.3 0.9 0.04  − .07 0.03
Romania 81 042 58 367  − 22 675  − 28 50.0 8444.1 8394.0 203.8 8.8 7.4  − 1.4
Russia 1 671 259 4 979 045 3 307 786 198 819.4 467 474.7 466 655.2 11 366.2 23.8 43.1 19.2
Rwanda 2011 1652  − 359  − 18 1.1 188.1 187.0 4.5 0.6 0.3  − 0.2
San Marino 0 60 60 100 0 5.1 5.1 0.1 0 0.02 0.02
Sao Tome and Principe 77 0  − 77  − 100 0.003 0  − 0.003 0 0.01 0  − 0.01
Saudi Arabia 17 833 12 450  − 5383  − 30 4.6 252.3 247.6 6.0 0.7 0.5  − 0.2
Senegal 72 830 1153  − 71 677  − 98 15.0 19.5 4.5  − 0.2 1.8 0.03  − 1.8
Serbia 21 445 7879  − 13 566  − 63.3 11.6 311.2 299.6 7.1 2.1 0.49  − 1.65
Sierra Leone 7370 9357 1987 27 3.1 622.2 619.1 15.0 0.4 0.9 0.4
Slovakia 1381 12 397 11 016 798 1.0 2924.0 2923.0 71.3 0.1 1.4 1.3
Slovenia 0 1511 1511 100 0 201.4 201.4 4.9 0 0.09 0.09
Solomon Islands 3600 596  − 3004  − 83 4.0 4.6 0.1  − .05 0.03 0.01  − 0.02
Somalia 229 512 63 834  − 165 678  − 72 138.0 1680.1 1542.5 35.0 3.6 1.6  − 2.0
South Africa 332 475 469 191 136 716 41 114.1 33 315.4 33 201.3 807.6 3.6 21.1 17.6
South Sudan 116 195 0  − 116 195  − 100 134.6 0  − 134.6  − 5.9 1.4 0  − 1.4
Spain 88 846 389 260 300 414 338 66.4 43 661.5 43 595.1 1062.0 3.9 24.2 20.3
Sri Lanka 1833 11 968 10 135 553 1.1 641.1 640.0 15.6 0.3 1.9 1.6
Sudan 129 811 375 172 245 361 189 73.7 18 904.6 18 830.8 457.9 2.1 8.9 6.8
Suriname 15 241 13 396  − 1845  − 12 166 282.6 266.0 6.2 0.007 0.04 0.04
Svalbard, NOR 0 5391 5391 100 0 69.3 69.3 1.7 0 0.0001 0.0001
Swaziland 0 11 956 11 956 100 0 1389.8 1389.8 33.9 0 1.0 1.0
Sweden 1705 267 055 265 350 15 560 0.8 39 678.7 39 677.8 967.7 0.008 3.5 3.5
Switzerland 1085 31 131 30 046 2768 1.4 4515.0 4513.6 110.1 0.03 6.9 6.8
Syria 52 713 20 091  − 32 622  − 62 23.8 1222.2 1198.4 28.8 7.0 3.8  − 3.2
Taiwan, CN 0 15 657 15 657 100 0 1741.8 1741.8 42.5 0 6.4 6.4
Tajikistan 40 349 26 484  − 13 865  − 34 12.3 1116.0 1103.7 26.7 2.6 3.1 0.4
Tanzania 118 767 309 865 191 098 161 59.9 22 027.3 21 967.4 534.6 4.1 10.2 6.1
Thailand 17 474 240 437 222 963 1276 8.1 15 665.8 15 657.7 381.7 2.29 24.3 22.1
East Timor 135 0  − 135  − 100 0.03 0  − 0.03  − 0.002 0.01 0  − 0.01
Togo 20 529 4829  − 15 700  − 77 15.1 236.6 221.5 5.1 1.9 0.5  − 1.3
Trinidad and Tobago 147 1061 914 624 0.1 50.5 50.7 1.2 0.02 0.37 0.3
Tunisia 14 377 20 882 6505 45 8.7 1091.2 1082.5 26.2 1.8 3.1 1.3
Turkey 217 418 464 426 247 008 114 142.4 54 428.8 54 286.3 1321.3 21.8 34.8 13.0
Turkmenistan 104 829 48 733  − 56 096  − 54 21.7 1110.9 1089.3 26.2 1.3 0.6  − 0.7
Turks and Caicos Islands, UK 0 39 39 100 0 11.8 11.8 0.3 0 0.00006 0.00006
UK 79 57 579 57 500 72 699 0.8 4288.0 4287.9 104.6 0.005 0.8 0.8
Uganda 21 010 31 562 10 552 50 10.7 2239.7 2229.0 54.2 2.1 3.6 1.4
Ukraine 178 281 239 720 61 439 35 96.0 16 492.9 16 396.9 398.1 12.6 13.3 0.8
United Arab Emirates 605 0  − 605  − 100 0.01 0  − 0.01 0 0.03 0  − 0.03
USA 1 641 111 2 717 657 1 076 546 66 563.9 128 583.3 128 019.4 3111.7 23.9 43.8 19.8
Uruguay 2588 50 030 47 442 1833 1.2 2698.0 2696.7 65.8 0.1 0.3 0.1
Uzbekistan 134 121 37 122  − 96 999  − 72 44.6 938.2 893.6 20.9 10.4 4.5  − 5.9
Vanuatu 256 111  − 145  − 57 0.2 2.1 1.9 0.04 0.002 0.003 0.0005
Venezuela 226 087 346 519 120 432 533 20.3 15 648.5 15 445.1 372.8 4.0 12.7 8.7
Vietnam 8967 198 822 189 855 2117 7.9 12 832.3 12 824.5 312.6 2.9 61.3 58.4
West Bank 50 0  − 50  − 100 0.02 0  − 0.02  − 1.0 0.005 0  − 0.005
Yemen 4247 1638  − 2609  − 61 98.8 47.1  − 51.7  − 3.1 0.6 0.3  − 0.4
Zambia 79 386 38 444  − 40 942  − 52 27.0 1362.8 1335.8 32.1 1.42 1.0  − 0.47
Zimbabwe 66 955 48 567  − 18 388  − 28 27.1 4549.7 4522.7 109.8 1.5 2.1 0.6
Total 18 725 478 38 948 417 20 222 939 108 16 648.0 2 368 151.5 2 351 503.8 57 036.0 831.0 2851.0 2019.9

* Countries or regions with no improvement are not listed

Breaking down the degrading land by cover type (ESA Copernicus 2023) reveals that 33% of all degraded land is scrub (shrub and herbaceous land in the ESA Copernicus listing), 24% is broadleaved forest, 21% is needle-leaved forest, 13% is grassland, and 9% is cropland (Table 5). As a proportion of each land cover type, degradation affects 30% of global scrublands, 32% of broadleaved forest, 38% of needle-leaved forest, 30% of grassland, and 24% of cropland. Needle-leaved forest stands out with the highest proportion of land affected because of the incidence of megafires in boreal forests: it might be overly optimistic to take the lower proportion of cropland affected as a policy success since severely degraded cropland often ceases to be classified as such because it is not cropland anymore.

Table 5.

Global degrading and improving areas by land cover 1981–2021

Code Land cover
ESA Copernicus LC 2020
Total pixels,
TP
5′ × 5′
Degrading
pixels, DP
5′ × 5′
DP/TP % DP/TDP* % Improving
pixels, IP
5′ × 5′
IP/TP % IP/TIP** %
10 Cropland, rainfed 116 901 30 198 25.8 5.4 37 412 32.0 7.18
11 Herbaceous 113 294 29 489 26.0 5.3 37 848 33.4 7.26
12 Tree or shrub 2769 344 12.4 0.06 1307 47.2 0.25
20 Cropland, irrigated or post-flooding 32 985 4382 13.3 0.8 17 791 53.9 3.41
30 Mosaic cropland (> 50%) / natural vegetation (tree) 53 149 13 741 25.9 2.5 17 455 32.8 3.35
40 Mosaic natural vegetation (tree) 49 532 13 646 27.5 2.5 15 857 32.0 3.04
50 Tree cover, broadleaved, evergreen, closed to open (> 15%) 152 214 61 022 40.1 11.0 36 308 23.9 6.97
60 Tree cover, broadleaved, deciduous, closed to open (> 15%) 94 178 24 338 25.8 4.4 35 811 38.0 6.87
61 Tree cover, broadleaved, deciduous, closed (> 40%) 12 303 3413 27.7 0.6 4202 34.2 0.81
62 Tree cover, broadleaved, deciduous, open (15–40%) 43 624 14 336 32.9 2.6 11 995 27.5 2.30
70 Tree cover, needle-leaved, evergreen, closed to open (> 15%) 125 879 32 688 26.0 5.9 54 741 43.5 10.50
71 Tree cover, needle-leaved, evergreen, closed (> 40%) 50 591 30 318 59.9 5.5 10 216 20.2 1.96
72 Tree cover, needle-leaved, evergreen, open (15–40%) 21 9 42.9 0.002 8 38.1 0.002
80 Tree cover, needle-leaved, deciduous, closed to open (> 15%) 122 069 50 886 41.7 9.1 30 476 25.0 5.85
81 Tree cover, needle-leaved, deciduous, closed (> 40%) 50 42 84.0 0.01 2 4.0 0.00
90 Tree cover, mixed leaf type (broadleaved and needle-leaved) 41 711 7403 17.7 1.3 20 275 48.6 3.89
100 Mosaic tree and shrub (> 50%) / herbaceous (< 50%) 64 709 22 209 34.3 4.0 21 231 32.8 4.07
110 Mosaic herbaceous (> 50%) / tree and shrub (< 50%) 17 340 6735 38.8 1.2 4290 24.7 0.82
120 Shrubland 156 515 42 938 27.4 7.7 38 586 24.7 7.40
121 Shrubland evergreen 3389 1272 37.5 0.2 1182 34.9 0.23
122 Shrubland deciduous 36 550 13 343 36.5 2.4 10 322 28.2 1.98
130 Grassland 197 266 54 845 27.8 9.9 51 572 26.1 9.89
140 Lichens and mosses 47 172 18 106 38.4 3.3 7534 16.0 1.45
150 Sparse vegetation (tree/shrub & herbaceous cover) (< 15%) 173 288 56 342 32.5 10.1 35 602 20.5 6.83
152 Sparse shrub (< 15%) 1138 382 33.6 0.1 210 18.5 0.04
153 Sparse herbaceous (< 15%) 4027 963 23.9 0.2 739 18.4 0.14
160 Tree cover, flooded, fresh or brackish water 13 005 7082 54.5 1.3 2483 19.1 0.48
170 Tree cover, flooded, saline water 2714 561 20.7 0.1 389 14.3 0.07
180 Shrub or herbaceous cover 38 427 13 329 34.7 2.4 12 184 31.7 2.34
190 Urban areas 12 241 2325 19.0 0.4 3205 26.2 0.61
Total 1 779 051 556 687 31.3 100 521 233 29.3 100

* TDP – Total degrading pixels

** TIP – Total improving pixels

Of the areas degrading over 1981–2003, 41% have continued to degrade through 1981–2021 (Fig. S1): mainly in the Democratic Republic of Congo (DR Congo), Angola, Zambia, swaths of boreal forest in Siberia and North America, mainland Southeast Asia, the East Indies, parts of North-central Australia, the Eurasian Steppes, and the Pampas and Chaco in South America.

Figure 4 shows NPP loss in the degrading areas. Globally, annual loss of NPP over the period 1981–2021 is 40.7 million tonnes of carbon (MtC); somewhat less than the annual loss of 41.5 MtC during 1981–2003. Overall, the degrading area has been increasing but the annual loss of NPP has declined.

Fig. 4.

Fig. 4

NPP loss in degrading areas 1981–2021

Table 2 shows that the most extensive degrading areas are in Russia, Canada, USA, DR Congo, and Kazakhstan—not entirely according to the size of the countries: in terms of absolute NPP loss, the ranking is Russia, Canada, DR Congo, Kazakhstan, and China. Inevitably with their numerous inhabitants, China and India head the list of affected population with 119 and 110 million, respectively, but in both cases land degradation directly affects only 8% of their total population. In contrast, the 95 million people living on degrading land in Indonesia, 61 million in Ethiopia and 57 million in DR Congo comprise 34, 49 and 57% of their respective populations.

Comparing the two time periods (Table 3), there are big proportional increases in land degradation in Russia, Canada, USA, DR Congo, and Kazakhstan while there are big decreases in China, Indonesia, and Australia. The numbers of people involved reveal both triumphs and disasters. In China, the number of people directly affected fell from 437 to 119 million, in India from 177 to 110 million, and in Bangladesh from 73 to 5 million. In each case, millions have moved to the cities; by one estimate, China’s rural population decreased by 241 million between 1995 and 2014 (Kundu et al. 2020) but there has also been internal migration to the cities in Nigeria where the number of people in degrading areas still rose from 17 to 60 million, in DR Congo from 32 to 57 million, in Uganda from 4 to 25 million, and in Afghanistan from 0.7 to 8.8 million. And in scores of low- and middle-income countries, land degradation went from bad to worse without much effect on the global aggregate but with a devastating toll on their people and societies.

Land improvement

In contrast, 26.2% of global land has improved over 1981–2021, 10.5% more than over 1981–2003. By area, Russia leads with 4.9 million km2, followed by Australia with 3.6 million km2 and China with 3.4 million km2. But the proportions of improved land in these huge countries are otherwise: Russia 29%, Australia 48%, China 36% and, by this measure, Portugal is preeminent its 83 thousand km2 of improved land constitutes 89% of the country. Comparing improving areas with global land cover (ESA Copernicus 2023), Table 5 shows that 31% is scrub, 24% is broadleaved forest, 18% is needle-leaved forest, 14% is cropland, and 11% is grassland. By proportion of each land cover type, improved land constitutes 27% of all scrublands, 31% of broadleaved forest, 32% of needle-leaved forest, 36% of cropland, and 24% of grassland.

Figure 3 and Table 4 highlight dramatic recent improvements in cropland in China, India, and the European Union that confirm optimism about the potential of consistent, effective policies. Figure 5 depicts the global trend in the annual sum NDVI between 1981 and 2021, also distinguishing cropland and non-cropland and, individually, China and India. Globally, annual sum NDVI increased by 2.3% (P < 0.05), 5.8% in cropland and 1.8% in non-cropland, but both China and India exceeded the global trends threefold, most notably in their improving cropland.

Fig. 5.

Fig. 5

Aggregate NDVI, 1981–2022 for the World, China and India for all land cover, cropland and non-cropland

Since the 3rd Plenum of the 11th Central Committee of the Chinese Communist Party in 1978, policy has promoted transformation of the peasantry to a ‘new type of professional farmer’, supported by the world’s largest public agricultural extension service (Babu et al. 2015). At the same time, between 1978 and 2022, the proportion of China’s population living in cities rose from 17.9 to 61.4%. In the first decade of the new millennium, the built-up area rose by 78.5% (Bai et al. 2014), half of it by building directly on arable land and, yet, the sown area increased from 146 million ha in 1980 to 166 million ha in 2019 and gross production doubled (NSBC 2020a, 2020b). In India, agricultural input subsidies and price support have been critical. The European Union has operated a common agricultural policy since 1962; its focus has changed over the years but support for farmers has been unstinting. Australian farmers are not subsidised but they apply well-informed common sense; in recent years, nearly all of them have adopted no-till Conservation Agriculture, otherwise known as regenerative agriculture (Dent and Boincean 2023; Kassam and Kassam 2023)—forsaking the plough; maintaining ground cover by cash crops and cover crops and, between crops, a mulch of crop residues; and planting directly through the protective surface mulch. Australians have also learned not to allow accumulation of tinder on their forest floors, reverting to the previous successful practice of controlled burning. Countries with unacceptable levels of land degradation must surely consider whether any of these avenues of improvement is open to them. The Australian way has the advantage of requiring minimal government intervention—it has been adopted across 15% of the world’s cropland as a farmers’ movement (Kassam et al. 2023).

Only one quarter of improving areas showed improvement throughout both periods (Fig. S2). Figure 6 shows NPP gain in improving areas over the whole 41 years: globally, the annual NPP gain is 57.8 MtC, significantly greater than the 1981–2003 figure, leading to a total NPP gain of 2.36 GtC.

Fig. 6.

Fig. 6

Global NPP gains in the improving areas over 1981–2021

If we take the net NPP gain or loss as an indicator of SDG15 land degradation neutrality, then Canada falls farthest short with a net NPP loss of 237.3 MtC. There were further big losses in DR Congo, Kazakhstan and Angola, amounting to 59, 47 and 41 MtC, respectively (Table 2). The greatest net gains have been in China, Australia, and Russia at 286, 123 and 96 MtC, respectively. However, when treated as a single entity, the European Union achieves the largest net gain at 300 MtC with no individual member state showing a net loss.

The improving areas more than doubled from 2003 to 2021 (Table 4). Many more people now live in improving areas—2.9 billion in 2021 compared with 0.8 billion in 2003: 664 million more people live on improving land in China, 538 million more in India, 118 million more in Bangladesh, 58 million more in Vietnam, and 20 million more in Nepal.

Interpretation of NDVI/NPP; limitations and policy considerations

Serendipitously, weather satellites hold up a mirror to biological productivity just as much as to weather systems. While these data illustrate interesting vegetation dynamics, it is worth reiterating that changes in climate-adjusted NDVI/NPP serve only as a proxy for land degradation or improvement. In particular, ambiguous data from the boreal forest belt almost certainly reflect catastrophic forest fires, as recorded by the special fire channel on MODIS Terra and Aqua satellites (Szpakowski and Jensen 2019; CAS 2023; You 2023), and outbreaks of pests like the mountain pine beetle (Kurz et al. 2008). These are part of the natural cycle. Therefore, we might expect recovery but ecosystem recovery is slow in cold and dry regions and if, as seems likely, these events are themselves related to climate change, the ecosystem may not recover. Moreover, changes in land use from forest to cropland, increases in grazing pressure, or market adjustments to a less-intensive management will all decrease NDVI. These changes might or might not be accompanied by soil erosion, salinity, or other symptoms of land degradation that require acute attention. In the same vein, pastoralists will not consider bush encroachment as land improvement although it may increase biomass.

So, how is Gaia doing? Over the period of study, gains have generally outpaced losses: global biological productivity has been increasing, and increasing faster in the last 20 years than in the twenty years before—benefitting from increasing atmospheric carbon dioxide concentration, nitrogen deposition, temperature, and rainfall. This statement requires qualification. First, Fig. 3 illustrates significant regional disparities: between improvements in the European Union, China and India; and big losses across boreal forests, sub-Saharan Africa, parts of southeast Asia, the Steppes, Cerrado, Pampas, and Chaco. The green revolution involved unprecedented application of fertilisers, irrigation, and new crop varieties that can respond to these inputs by economies that could afford them: people that could not afford them have been bypassed. Secondly, crude global and national accounting conceals significant land degradation. The patterns of megafires in boreal forests and degradation of globally significant grain-producing areas on the steppes were already evident in the 1981–2003 data. They are more prominent in the extended data, which may be attributed to enhanced global heating and accompanying drought in continental areas where rainfall has not also increased. Crop yields across the steppes have stalled or even decreased during the study period; air temperatures have been increasing by 0.45 °C every decade but precipitation has remained much the same so, e.g. in southern Ukraine the soil water deficit has increased from 300 mm in 1990 to 400 mm in 2000 and is heading for 550 mm in 2050 and 700 mm in 2100. This trend will render half of Ukraine’s current arable land unsuitable for rainfed crops by 2050 and two-thirds by 2100 (Romaschenko et al. 2025). Thirdly, more primary productivity is not necessarily better and, certainly, not sustainable if is achieved by sacrificing biodiversity, expending more energy that it produces, and depleting aquifers. Regenerative agriculture offers equally productive but more sustainable options.

Gaia’s gains in carbon capture are dwarfed by man-made carbon emissions: between 1981 and 2021, the land has captured 694 MtC (Table 2), merely a few per cent of 10 Gt annual fossil carbon emissions. Moreover, the increasing extent and frequency of megafires and unremitting forest clearance expose the fragility of the grand strategy embraced by the Kyoto Protocol of the UN Convention on Climate Change that relies on forests as a carbon sink. We should do well to leave fossil fuels in the ground and invest in carbon storage with a longer half-life, such as soil organic matter that holds more carbon than all standing vegetation and the atmosphere combined.

The global assessment and trends over policy-significant 20-year periods show that 1.2 billion people live in areas that have degraded over the past 20 years, compared with 2.9 billion people living in areas that have improved. This underscores the power of consistent, targeted policies on land resilience and sustainability but, remembering Gaia’s greater domain, the 70% that is ocean does not figure in our calculations. Nor does the increasing area occupied by urban and industrial development and infrastructure. Both cry out for new lines of research. Urban greenness attracts increasing attention in the field of public health and well-being, particularly the air-conditioning roles of vegetation, trapping poisonous pollutants and dramatically lowering summer temperatures. GIMMS data at 9-km definition are too coarse to be useful in this case but MODIS data might be employed and cities have the resources to initiate specific, street-by-street programmes using drones.

For all the caveats, NPP data are of immediate practical value to policy makers who need to know exactly where and to what extent biologically significant changes are happening. Long-term trends of NDVI/NPP derivatives provide a globally consistent yardstick. They direct attention to places that demand investigation and action on the ground, as intended under the parent programme of the UN Food and Agriculture Organisation: Land Degradation Assessment in Drylands (Biancalani et al. 2013). It is hard to distinguish between statistically significant changes and practically significant changes—short-term variability reflects seasonal weather and local management decisions—but maps of long-standing trends should be on the desks, or pinned to the wall, in front of every policy maker. They are prescient predictors of political trouble.

Conclusions

Changes in land degradation and improvement since 1981 have been assessed by proxy using remotely sensed NDVI translated into net primary productivity. This presents a different picture from previous qualitative assessments of land degradation that compounded current and historical processes but NDVI/NPP is only a proxy—some elements of land degradation and improvement, such as biodiversity, are not captured by NPP.

In the period 1981–2021, 28.5% of land was degrading—most notably through megafires in boreal forests, land clearance and cultivation in sub-Saharan Africa and the East Indies, and bare ground across the steppes. The degraded area was 4.5% greater than in 1981–2003 but fewer people were affected—1.2 billion compared to 1.5 billion. Over the longer period, consistent policies on sustainability increased biological productivity on 26% of land (10.5% more than 1981–2003).

At the present time, political and financial support for continuation of these policies is uncertain. But evidence-based decision-making still needs evidence. Developing any new policies will require quantitative data on the extent and degree of active land degradation to show where action is necessary.

Every line of Tables 3 and 4 tells a story but GIMMS holds more, and more-detailed information; significant variations within countries can be distinguished by regional analysis and MODIS NPP can deliver this information at the field scale.

It remains up to politicians to ask the right questions: Where, exactly, is productivity better, or worse? And why? That is to say: What are the proximal and underlying causes? What can and should be done to solve the problems or take advantage of the opportunities—in the short term and in the longer term? Who is responsible? Is it me? And to act upon the answers. Clearly, information is needed for the appropriate recommendation domains which, in most cases, will be nested within the national pictures that we have presented; and at the landscape level, the defining roles of terrain, soils and drainage, strategy, and implementation can be incorporated.

Supplementary Information

Below is the link to the electronic supplementary material.

Acknowledgements

In the beginning, J. Compton Tucker kept the wavebands measured by the AVHRR separate—so weather satellites watch more than the weather. We thank A. Kooiman, G. Genova, M. Ruiperez Gonzalez, N. Batjes and J. Leenaars for an internal review of the paper; and we are grateful to the editors and anonymous reviewers for goading us to do better.

Biographies

Zhanguo Bai

is a Senior Researcher at ISRIC – World Soil Information, the Netherlands. His research interests include soil erosion and soil & water conservation, land degradation assessment and sustainable land management using GIS, remote sensing, radioactive and isotopic tracing.

Jason Daniel Russ

is a Senior Economist in the Office of the Chief Economist of the Sustainable Development Practice at the World Bank. His research interests include water, agricultural, and environmental economics.

Kentaro Florian Mayr

is a Consultant in the Office of the Chief Economist of the Sustainable Development Practice at the World Bank. His research interests are in applied econometrics, machine learning, and environmental economics.

David Dent

was formerly Director of ISRIC—World Soil Information. He has 60-years’ experience of soil survey, land evaluation and land use planning with national and international agencies in every continent and as a university teacher in environmental sciences. He has special expertise in problem soils, salinity, water resources and the interface of science and policy.

Declarations

Conflict of interest

The authors declare that they have no conflicts of interest regarding this manuscript.

Footnotes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. Alexandrov, G.A., and T. Oikawa. 1997. Contemporary variations in terrestrial net primary productivity: The use of satellite data in the light of the extremal principle. Ecological Modelling 95: 113–118. [Google Scholar]
  2. Amelung, W., D. Bossio, W. de Vries, I. Kögel-Knabner, J. Lehmann, R. Amundson, R. Bol, C. Collins, et al. 2020. Towards a global-scale soil climate mitigation strategy. Nature Communications 11: 5427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amundson, R., A.A. Berhe, J.W. Hopmans, C. Olson, A.E. Sztein, and D.L. Sparks. 2015. Soil and human security in the 21st century. Science 348: 1261071. [DOI] [PubMed] [Google Scholar]
  4. Asrar, G.M., M. Fuchs, E.T. Kanemasu, and J. Hatfield. 1984. Estimating absorbed photosynthetically active radiation and leaf area index from spectral reflectance in wheat. Agronomy Journal 87: 300–306. [Google Scholar]
  5. Babu, S.C., J. Huang, P. Venkatesh, and Y. Zhang. 2015. A comparative analysis of agricultural research and extension reforms in China and India. China Agricultural Economic Review 7: 541–572. [Google Scholar]
  6. Bai, X., P. Shi, and Y. Liu. 2014. Society: Realising China’s urban dream. Nature 509: 158–160. [DOI] [PubMed] [Google Scholar]
  7. Bai, Z.G., and D.L. Dent. 2006. Global assessment of land degradation and improvement: pilot study in Kenya. (Wageningen: Report 2006/01, ISRIC – World Soil Information).
  8. Bai, Z.G., and D.L. Dent. 2009. Recent land degradation and improvement in China. Ambio 38: 150–156. 10.1579/0044-7447-38.3.150. [DOI] [PubMed] [Google Scholar]
  9. Bai, Z.G., D.L. Dent and M.E. Schaepman. 2005. Quantitative global assessment of land degradation and improvement: pilot study in North China. (Wageningen: Report 2005/6, ISRIC – World Soil Information).
  10. Bai, Z.G., D.L. Dent, L. Olsson, and M.E. Schaepman. 2008. Proxy global assessment of land degradation. Soil Use and Management 24: 223–234. [Google Scholar]
  11. Beasley, R. 2021. Dead in the water. A very angry book about our greatest environmental catastrophe…the death of the Murray-Darling basin. Crows Nest NSW: Allen and Unwin. [Google Scholar]
  12. Biancalani, R., F. Nachtergaele, M. Petri, and S. Bunning. 2013. Land degradation assessment in drylands—Methodology and results. Rome: FAO. [Google Scholar]
  13. Borrelli, P., D.A. Robinson, L.R. Fleisher, E. Lugato, C. Ballabio, C. Alewell, K. Meusburger, S. Modugno, et al. 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications 8: 2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. CAS. 2023. Blue book on forest fire carbon emissions research. Beijing: Chinese Academy of Sciences. [Google Scholar]
  15. Chen, S., and P. Rao. 2008. Land degradation monitoring using multi-temporal Landsat TM/ETM data in a transition zone between grassland and cropland of northeast China. International Journal of Remote Sensing 29: 2055–2073. [Google Scholar]
  16. Chen, X., Y. Wang, Y. Chen, S. Fu, and N. Zhou. 2023. NDVI-based assessment of land degradation trends in Balochistan, Pakistan, and analysis of the drivers. Remote Sensing 15: 2388. [Google Scholar]
  17. CIESIN. 2018. Gridded population of the World, Version 4: Land and Water Area, Revision 11, Palisades NY: Columbia University/NASA Socioeconomic Data and Applications Center. https://sedac.ciesin.columbia.edu/data/collection/gpw-v4/sets/browse (Accessed 8 June, 2023).
  18. Dent, D.L., and B.P. Boincean, eds. 2023. Regenerative agriculture. What’s missing? What do we still need to know? Cham: Springer Nature Switzerland. [Google Scholar]
  19. ESA Copernicus. 2023. Land cover classification gridded maps from 1992 to present derived from satellite observation. European Space Agency: Copernicus Climate Change Service Climate Data Store.
  20. Folke, C., S. Carpenter, T. Elmqvist, L. Gunderson, C.S. Holling, and B. Walker. 2002. Resilience and sustainable development: Building adaptive capacity in a world of transformations. Ambio 31: 437–440. 10.1579/0044-7447-31.5.437. [DOI] [PubMed] [Google Scholar]
  21. Gafurova, L., and M. Juliev. 2021. Soil degradation problems and foreseen solutions in Uzbekistan. In Regenerative agriculture: What’s missing? What do we still need to know?, ed. David Dent and Boris Boincean, 59–67. Cham: Springer. [Google Scholar]
  22. Grinand, C., G. Vielledent, T. Razafgimbo, J.R. Rakotoarijaona, M. Nourtier, and M. Bernoux. 2020. Landscape-scale spatial modelling of deforestation, land degradation, and regeneration using machine learning tools. Land Degradation & Development 31: 1699–1712. [Google Scholar]
  23. Harris, I., T.J. Osborn, P. Jones, and D. Lister. 2020. Version 4 of the CRU TS Monthly High-Resolution Gridded Multivariate Climate Dataset. Scientific Data. Norwich: Climatic Research Unit, University of East Anglia. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Higginbottom, T.P., and E. Symeonakis. 2014. Assessing land degradation and desertification using vegetation index data: Current frameworks and future directions. Remote Sensing 6: 9552–9575. [Google Scholar]
  25. Ibrahim, Y.Z., H. Balzter, J.D. Kaduk, and C.J. Tucker. 2015. Land degradation assessment using residual trend analysis of GIMMS NDVI3g, soil moisture and rainfall in Sub-Saharan West Africa from 1982 to 2012. Remote Sensing 7: 5471–5494. [Google Scholar]
  26. Kassam, A., and L. Kassam. 2023. Rethinking food and agriculture. New ways forward. Duxford: Woodhead Publishing. [Google Scholar]
  27. Kassam, A., T. Friedrich, and R. Derpsch. 2023. State of the global adoption and spread of Conservation Agriculture. In Advances in conservation agriculture. Volume 3: Adoption and spread, ed. A. Kassam, 1–14. Cambridge: Burleigh Dodds. [Google Scholar]
  28. Kirui, O.K., A. Mirzabaev, and J. von Braun. 2021. Assessment of land degradation ‘on the ground’ and from ‘above.’ SN Applied Science 3: 318. [Google Scholar]
  29. Kundu, D., T. Debnath, and B. Lahiri. 2020. Overview of Urban Policies in China. In Developing national urban policies, ed. D. Kundu, R. Seitchiping, and M. Kinjanhu. Singapore: Springer. [Google Scholar]
  30. Kurz, W.A., C.C. Dymond, G. Stinson, G.J. Rampley, E.T. Neilson, A.L. Carroll, T. Ebata, and L. Safranyik. 2008. Mountain pine beetle and forest carbon feedback to climate change. Nature 452: 987–990. [DOI] [PubMed] [Google Scholar]
  31. Le Houérou, H.N. 1984. Rain-use efficiency: A unifying concept in arid-land ecology. Journal of Arid Environments 7: 213–247. [Google Scholar]
  32. Livezey, R.E., and W.Y. Chen. 1983. Statistical field significance and its determination by Monte Carlo techniques. Monthly Weather Review 111: 46–59. [Google Scholar]
  33. Lovelock, J.E. 1979. Gaia. A new look at life on Earth. Oxford: Oxford University Press. [Google Scholar]
  34. McCammon, A.L.T. 1992. UN conference on environment and development, held in Rio de Janeiro, Brazil, during 3–14 June 1992, and the ’92 Global Forum, Rio de Janeiro, Brazil, 1–14 June 1992. Environmental Conservation 19: 372–373. [Google Scholar]
  35. Melillo, J., A.D. McGuire, D.W. Kicklighter, B. Moore, C.J. Vorosmarty, and A.L. Schloss. 1993. Global climate-change and terrestrial net primary production. Nature 363: 6426. [Google Scholar]
  36. Millennium Ecosystem Assessment. 2005. Ecosystems and human well-being: Wetlands and water synthesis. Washington DC: World Resources Institute. [Google Scholar]
  37. Myneni, R.B., R.R. Nemani, and S.W. Running. 1997. Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Transactions on Geoscience and Remote Sensing 35: 1380–1393. [Google Scholar]
  38. NBSC. 2020a. China statistical yearbook 2020. Beijing: China Statistics Press. [Google Scholar]
  39. NBSC. 2020b. Bulletin on the national grain output in 2020. Beijing: National Bureau of Statistics of China. [Google Scholar]
  40. Olsson, L., H. Barbosa, S. Bhadwal, A. Cowie, K. Delusca, D. Flores-Renteria, K. Hermans, E. Jobbagy, et al. 2019. Land degradation. In Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, ed. P.R. Shukla, et al. Geneva: IPCC. [Google Scholar]
  41. Pinzon, J.E., E.W. Pak, C.J. Tucker, U.S. Bhatt, G.V. Frost and M.J. Macander. 2023. Global Vegetation Greenness (NDVI) from AVHRR GIMMS–3G+, 1981–2022. ORNL DAAC, Oak Ridge, Tennessee, USA.
  42. Prince, S.D. 2019. Challenges for remote sensing of the Sustainable Development Goal SDG15.3.1 productivity indicator. Remote Sensing of Environment 234: 11142. [Google Scholar]
  43. Prince, S.D., K.J. Wessels, C.J. Tucker, and S.E. Nicholson. 2007. Desertification in the Sahel: A reinterpretation of a reinterpretation. Global Change Biology 13: 1308–1313. [Google Scholar]
  44. R Core Team. 2023. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. [Google Scholar]
  45. Ripple, W.J. 1985. Asymptotic reflectance characteristics of grass vegetation. Photogrammetric Engineering and Remote Sensing 51: 1915–1921. [Google Scholar]
  46. Rivera-Marin, D., J. Dash, and B. Ogutu. 2022. The use of remote sensing for desertification studies: A review. Journal of Arid Environments 206: 104829. [Google Scholar]
  47. Romashchenko, M., B. Faybishenko, D. Onopriienko, H. Hapich, R. Novitskyi, D. Dent., R. Saidak, S. Usatyi and H. Roubik. 2025. Prospects for restoration of Ukraine’s irrigation system. Water International 50: 104–120.
  48. Running, S., and M. Zhao. 2021. MODIS/Terra net primary production gap-filled yearly L4 Global 500m SIN Grid V061. 2021. Sioux Falls SD: NASA EOSDIS Land Processes Distributed Active Archive Center. [Google Scholar]
  49. Schillaci, C., A. Jones, D. Simoes Vieira, M. Munafò, and L. Montanarella. 2023. Evaluation of the United Nations Sustainable Development Goal 15.3.1 indicator of land degradation in the European Union. Land Degradation & Development 34: 250–268. [Google Scholar]
  50. Sha, Z., Y. Bai, R. Li, H. Lan, X. Zhang, J. Li, X. Liu, S. Chang, et al. 2022. The global carbon sink potential of terrestrial vegetation can be increased substantially by optimal land management. Communications Earth & Environment 3: 8. [Google Scholar]
  51. Shukla, P.R., et al. (eds.). 2019. IPCC, Climate Change and Land, an IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Geneva: IPCC. [Google Scholar]
  52. Sims, N.C., G.J. Newnham, J.R. England, et al. 2021. Good Practice Guidance. SDG Indicator 15.3.1, Proportion of land that is degraded over total land area. Version 2.0. Bonn: UNCCD. [Google Scholar]
  53. Sonneveld, B.G.J.S., and D.L. Dent. 2007. How good is GLASOD? Journal of Environmental Management 90: 274–283. [DOI] [PubMed] [Google Scholar]
  54. Szpakowski, D., and J. Jensen. 2019. A review of the applications of remote sensing for fire ecology. Remote Sensing 11: 2638. [Google Scholar]
  55. Tiefenbacher, A., T. Sandén, H.P. Haslmayr, J. Miloczki, W. Wenzel, and H. Spiegel. 2021. Optimizing carbon sequestration in croplands: A synthesis. Agronomy 11: 882. [Google Scholar]
  56. Tóth, G., T. Hermann, M.A. da Silva, and L. Montanarella. 2018. Monitoring soil for sustainable development and land degradation neutrality. Environmental Monitoring and Assessment 190: 57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Tucker, C.J., L.D. Miller, and R.L. Pearson. 1975. Shortgrass prairie spectral measurements. Photogrammetric Engineering & Remote Sensing 41: 11157–11162. [Google Scholar]
  58. Tziolas, N., N. Tzakiridas, Y. Ogen, E. Kalopesa, E. Ben-Dor, J. Theocharis, and G. Zalidis. 2020. An integrated methodology using open soil spectral libraries and Earth Observation data for soil organic carbon estimations in support of soil-related SDGs. Remote Sensing of Environment 244: 111793. [Google Scholar]
  59. United Nations. 2024a. Climate action: land and climate change.https://www.un.org/en/climatechange/science/climate-issues/land (Accessed 5 January 2024).
  60. United Nations. 2024b. World Population Prospects 2024. United Nations Department of Economic and Social Affairs, Population Division.
  61. Wang, J.Z., J. Zhen, W. Hu, S. Chen, I. Lizaga, M. Zeraatpisheh, and X. Yang. 2023. Remote sensing of soil degradation: Progress and perspective. International Soil and Water Conservation Research 11: 429–454. [Google Scholar]
  62. Yengoh, G.T., D.L. Dent, L. Olsson, A.E. Tengberg, and C.J. Tucker. 2016. Use of normalized difference vegetation index (NDVI) to assess land degradation at multiple scales: Current status, future trends and practical considerations. Cham: Springer Briefs in Environmental Science. [Google Scholar]
  63. You, X. 2023. Surge in extreme forest fires fuels global emissions. Nature. 10.1038/d41586-023-04033-y. [DOI] [PubMed] [Google Scholar]
  64. Zhang, G., and H. Wu. 2018. From “problems” to “solutions”: Soil functions for realization of sustainable development goals. Bulletin of Chinese Academy of Sciences 33: 124–134. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials


Articles from Ambio are provided here courtesy of Springer

RESOURCES