Abstract
Land degradation is holding back attainment of the Sustainable Development Goals and exacerbating global heating. Land degradation and improvement since 1981 have been assessed by proxy using remotely sensed Normalised Difference Vegetation Index (NDVI), translated into net primary productivity. The quantitative data show the extent and trends of changes over four decades and identify where further action is needed. During 1981–2021, 28.5% of land was degrading—most notably through megafires in boreal forests, land clearance and cultivation in sub-Saharan Africa and the East Indies and across the steppes. The degraded area increased by 4.5% compared to 1981–2003 yet affected fewer people—1.2 billion compared to 1.5 billion. Consistent policies on sustainability increased biological productivity on 26% of land (10.5% more than 1981–2003), particularly cropland in China, India and the European Union; 2.9 billion people now live in the improved areas compared with 0.8 billion in the improving areas of 1981–2003.
Supplementary Information
The online version contains supplementary material available at 10.1007/s13280-025-02179-9.
Keywords: Carbon capture, Land degradation & improvement, NDVI, NPP, Sustainability
Introduction
Land degradation encompasses long-term decline of productivity, environmental integrity, or social value (Folke et al. 2002; Millennium Ecosystem Assessment 2005; Bai et al. 2008; Shukla et al. 2019; Grinand et al. 2020). Most of this degradation is man-made, including impoverishment of vegetation and soil erosion that diminish infiltration of rainfall and recharge of springs and groundwaters; also, nutrient depletion, salinity, sodicity and/or acidity. On a grand scale, we have seen the transformation of the Aral Sea to Aralkum Desert (Gafurova and Juliev 2021), the same actions playing out in the Murray-Darling Basin (Beasley 2021), and continuation of the Dust Bowl of the 1930s across drylands on every continent. Away from the headlines, farm by farm, year on year, these processes are driving millions of people who cannot make a living on their land to leave it—and challenge the frontiers and politics of the wealthy world. This is a global issue (McCammon 1992; Amundson et al. 2015; Borrelli et al. 2017; Olsson et al. 2019; Wang et al. 2023) looming over the Sustainable Development Goals (SDGs), in particular (1) no poverty, (2) zero hunger, (6) clean water and sanitation, (13) climate action, and (15) land degradation neutrality. Monitoring land degradation and sustainability are both necessary for informed decision-making—and challenging (Tóth et al. 2018; Zhang et al. 2018; Prince 2019; Tziolas et al. 2020).
The normalised difference vegetation index (NDVI) recorded by weather satellites measures absorption of photosynthetically active radiation and reflection of unusable heat (Yengoh et al. 2016), thereby capturing photosynthetic capacity and the intensity of life. If more is better, then increased NDVI translated into net primary productivity (NPP) provides an index of land improvement: and a decrease indicates degradation. James Lovelock’s Gaia hypothesis (1979) conceptualises Earth as a self-regulating system where biological, chemical and physical processes interact to maintain conditions favourable for life. Within this frame, NPP plays a crucial role in stabilising atmospheric composition and regulating the carbon cycle. Terrestrial and marine ecosystems constitute planetary-scale feedback by capturing and storing carbon but this activity is disrupted by human-induced land use change and soil degradation. Estimates of annual NPP vary significantly from 53.2 billion or 109 tonnes carbon (GtC) (Melillo et al. (1993) to more recent figures of 112–169 GtC (Sha et al. 2022). Effective management strategies, particularly in agricultural landscapes with big yield gaps or historic soil organic carbon losses, could enhance this natural regulatory capacity with an extra 13.7 GtC (Amelung et al. 2020; Tiefenbacher et al. 2021) and mitigate some of the impacts of anthropogenic CO2 emissions, which surpassed 10 GtC in 2021 (United Nations 2024a).
Good-practice guidance for assessing SDG indicator 15.3—the proportion of land that is degraded—considers trends in land cover, land productivity and carbon stocks (Sims et al. 2021). As a proxy for land productivity, we employ the Global Inventory Modelling and Mapping Studies (GIMMS) dataset of remotely sensed NDVI, now comprising 40 years of consistent data. NDVI has been widely applied to assess land degradation (Tucker et al. 1975; Bai et al. 2008; Bai and Dent 2009; Higginbottom and Symeonakis 2014; Yengoh et al. 2016; Kirui et al. 2021; Rivera-Marin et al. 2022; Schillaci et al. 2023), translating into leaf-area index (Myneni et al. 1997), the fraction of photosynthetically active radiation absorbed by vegetation (Asrar et al. 1984), and NPP (Alexandrov and Oikawa 1997). So, we are employing a proxy for a proxy: NDVI for NPP and NPP for land productivity. And declining NDVI or NPP does not necessarily indicate land degradation; nor does increase necessarily indicate improvement. Biological productivity depends on several factors: climate—especially rainfall, sunshine and length of growing season; land use; large-scale ecosystem disturbances such as fires; and the global increase in atmospheric carbon dioxide and active-nitrogen deposition. So, to interpret NDVI and NPP trends in terms of land degradation or improvement, we must eliminate false alarms from climatic variability and land use change. To account for variability of rainfall and, to some extent, soil characteristics, we consider, rain-use efficiency (RUE), the ratio of NPP to precipitation (Le Houérou 1984); the combination of remotely sensed NPP and station-observed rainfall has been used to assess land degradation at various scales (Prince et al. 2007; Ibrahim et al. 2015; Chen et al. 2023). We use the same principle to adjust for temperature with energy-use efficiency (EUE).
The aim of this study is to identify where sustainability investments and policies may, or may not be, succeeding (at least in terms of biological productivity), and where future efforts should be directed. Understanding land degradation trends is useful for designing effective land management strategies, and by assessing long-term changes in biological productivity, we can judge the success, or otherwise, of current policies. The updated global assessment of land degradation and improvement applies the same procedure as our 1981–2003 assessment (Bai et al 2008; Bai and Dent 2009) which was validated by field observations (Bai et al. 2005; Bai and Dent 2006; Chen and Rao 2008). By drawing on four decades of consistent data, this study supports evidence-based decision-making to achieve land degradation neutrality and other Sustainable Development Goals.
Materials and methods
We derived trends of NPP (carbon capture) at national and global levels from the GIMMS 3rd generation V1.2 (GIMMS–3G +) dataset of global NDVI measurements by the Advanced Very High-Resolution Radiometer (AVHRR) carried on polar-orbiting satellites since 1978. GIMMS compiles corrected and calibrated data from 1982 up to 2021 at a spatial resolution of 0.0833 degree. Maximum NDVI values are composited fortnightly from the sequence of AVHRR sensors, taking account of calibration loss, orbital drift and volcanic eruptions, and provided in Network Common Data format (NetCDF) (Pinzon et al. 2023). Figure 1 summarises our procedure. Some useful terms and definitions appear in Table 1.
Fig. 1.
Sequences of data analyses
Table 1.
Terms and definitions
| Terms | Definitions | Acronyms |
|---|---|---|
| Advanced Very High-Resolution Radiometer | Instrument carried by the US National Aeronautics and Space Administration (NASA) weather satellites | AVHRR |
| Global Inventory Modelling and Mapping Studies | AVHRR dataset maintained by the University of Maryland | GIMMS |
| Energy-Use Efficiency | Ratio of annual sum NDVI to annual accumulated temperature | EUE |
| Moderate Resolution Imaging Spectroradiometer | Instrument carried by the NASA Terra and Aqua satellites | MODIS |
| The Normalised Difference Vegetation Index | Ratio of (Near Infra-red – Red) / (Near Infra-red + Red) spectral bands reflected by vegetation | NDVI |
| Net Primary Productivity | Energy stored by photosynthesis less energy used for respiration and maintenance per unit area and time | NPP |
| Rain-Use Efficiency | Ratio of annual sum NDVI to annual rainfall | RUE |
RUE and EUE were calculated at the same resolution as GIMMS–3G + data using monthly precipitation and temperature values since January 1981 abstracted from the University of East Anglia Climatic Research Unit Time Series (CRU TS v4.0.6) gridded at 0.5° resolution (Harris et al. 2020).
MODIS NPP data at 500 m resolution (MOD17A3HGF Version 6.1, Running and Zhao 2021) were used to translate GIMMS NDVI data to NPP by re-sampling MODIS data to the same resolution as GIMMS using nearest-neighbour assignment. Correlation between annual sum NDVI and annual NPP at pixel level was calculated for the overlapping period (2000–2021) according to the equation: y = Ax + B, where y is NPP for a given year (kgC/ha/year); x, annual sum NDVI for the given year; A, gradient or slope of the linear regression; B, intercept of the linear regression. NPP loss and gain were calculated by multiplication of multiple-year average of annual NPP (2000–2021) and percentage change of annual sum NDVI from 1981–2021. The percentage change of NDVI was calculated by 100*gradient of annual sum linear trend/multiple-year average of annual sum NDVI 1981–2021.
MODIS global NPP data for 2000–2022 were used in Fig. 2 to provide context for the changes revealed over the longer term by the GIMMS data.
Fig. 2.
Mean annual NPP 2000–2022, MODIS data from Running and Zhao (2021)
Land cover The Copernicus Climate Change Service provides global land cover maps from 2016 to the present at 300 m resolution consistent with the global annual land cover maps from 1992–2015 produced by the European Space Agency Climate Change Initiative land cover project (ESA Copernicus 2023). Land cover 2020 was used to compare with identified land degradation and improvement and to mask urban areas and bare ground.
Population The Gridded Population of the World, version 4 (CIESIN 2018) provides UN World Population Projection-adjusted population count and population density at various resolutions. The gridded population counts for 2005 and 2020 at 2.5 arc-minutes resolution were compared with indices of land degradation and improvement.
Trend analysis Trends were determined by linear regression. The absolute change (∆) is the gradient of the regression; relevant or percentage change (%) is 100*(the absolute change/multiple-year average of annual sum NDVI 1981–2021). Data were tested for temporal and spatial independence following Livezy and Chen (1983). When the absolute values of the autocorrelation coefficients of lag-1 to lag-3, calculated for a time series consisting of n observations, are not larger than the typical critical value, i.e. 1.96/ corresponding to the 5% significance level, the observations in this time series can be accepted as being independent. The T–test was used to arrange the slope values in classes showing strong or weak positive or negative trends:
where b is the estimated slope of the regression line between the observation values and time and se(b) represents the standard error of b.
R language (R Core Team 2023) was used for data processing, trend and correlation analysis; ESRI ArcGIS was used for statistics and map visualisation.
Degrading areas were identified, first, by a negative trend of sum NDVI. To distinguish between productivity decline caused by land degradation and declining productivity due to other factors, rainfall variability and irrigation have been accounted for by:
Identifying pixels with a positive relationship between NDVI and rainfall
For those pixels, RUE has been considered: where productivity declined but RUE increased, the decline of productivity was attributed to declining rainfall; those areas were masked (urban areas and bare ground were also masked)
NDVI trends have been calculated for the remaining areas as RUE-adjusted NDVI: i.e., pixels where there was a negative relationship between NDVI and rainfall. NDVI trends were also calculated for pixels with positive relationship between NDVI and rainfall but declining RUE.
Improving areas were identified by: (1) a positive trend in sum NDVI and a negative correlation with rainfall; (2) a positive trend in sum NDVI and positive RUE and EUE. Again, urban areas and bare ground were masked.
Net primary productivity loss in the identified degrading areas or gain in the improving areas was calculated using the translation of NDVI into NPP. The number of people affected was estimated by overlaying the degrading or improving areas with population maps.
Results and discussion
Context
As context for considering changes in NPP, Fig. 2 shows current global land productivity. Figure 3 then shows climate-adjusted change in NDVI over the period 1981–2021 with urban and barren land masked. This is our measure of land degradation (in red) and improvement (in green). It presents a different picture from earlier assessments that compounded historical land degradation with ongoing changes (Sonneveld and Dent 2007). By focussing on data since 1981, this analysis highlights recent trends but does not capture the extent of past land degradation, much of which is irreversible.
Fig. 3.
Trends in climate-adjusted annual sum NDVI, 1981–2021: top, absolute; bottom, relative
Caveats concerning global application of the data
NDVI performs best as an indicator of NPP in areas with sparse to moderate vegetation cover. Under a dense canopy, additional biomass below the canopy is hidden and its increase brings no detectable change in the signal (Ripple 1985).
In compiling the GIMMS database, cloud cover is screened by reading the maximum NDVI values within twice-monthly compositing periods (Pinzon et al. 2023). Even so, prolonged cloud cover may result in an underestimation of NDVI.
The spatial variability of rainfall in drylands makes interpolation of point measurements problematic, and meteorological stations are sparse in many of these areas.
NDVI is only a proxy. It tells us nothing about the kind of degradation or improvement. What is happening in, say, burning boreal forests is different from what happened in New Zealand when price support for agriculture was abandoned in 1984. However, because the index is mapped as a continuous surface, the drivers may be revealed by correlation with other geo-located biophysical and socio-economic data.
As a measure of land degradation or improvement, loss or gain of NPP has been calculated for those areas where both NPP and RUE are declining (i.e. land degradation) or where NPP, RUE and EUE are increasing (i.e. land improvement). This is likely to be a conservative estimate since, globally, NPP has increased over the study period. However, in areas where NPP is increasing while RUE and EUE are declining, some land degradation may already be occurring, even if it is not yet reflected in declining NPP. If we only consider areas where both indices are decreasing, such early-stage degradation would go undetected. For this reason, RUE or EUE should be used alone for early warning of land degradation or a herald of improvement; otherwise, we might overlook promising interventions that increase RUE or EUE but have not yet brought about increasing NPP.
Additionally, some degradation or improvement, notably concerning biodiversity and consequently resilience, is not fully captured by NPP.
We acknowledge these caveats and return to them in the Discussion and Conclusions.
Land degradation
Global analysis reveals that, over the period 1981–2021, 28.5% of land has been degrading—4.5% more than our previous assessment over 1981–2003 (Bai et al. 2008). But 26.2% of land has been improving—10.5% more than earlier. About 1.2 billion people live in the 1981–2021 degrading areas—0.3 billion less than in areas so identified earlier. Considering the global population increased by one quarter over the last 20 years (United Nations 2024b), this might be considered a positive result but can be attributed in large measure to abandonment of the land.
Table 2 lists by country areas of land degradation and improvement, NPP loss and gain, and directly affected people. Directly affected people refers to the rural population of the degraded or improved areas although, of course, city dwellers in these catchments are not unaffected, not least those recently relocated from these same areas (Tables 3 and 4).
Table 2.
Areas of land degradation and improvement, NPP loss and gain, and affected people by country between 1981 and 2021*
| Country | Degrading area km2 | % territory | % global degrading area ktC/41 years | Total NPP loss | LD affected people, millions | % total population in degrading areas | Improving area km2 |
|---|---|---|---|---|---|---|---|
| Afghanistan | 117 876 | 18.1 | 0.27 | 1763 | 8.8 | 21.4 | 115 033 |
| Albania | 1565 | 5.4 | 0.004 | 105 | 0.03 | 0.9 | 12 125 |
| Algeria | 49 408 | 2.1 | 0.10 | 883 | 6.1 | 13.6 | 72 409 |
| Andorra | 52 | 11.1 | 0.00 | 7 | 0.01 | 11.7 | 364 |
| Angola | 835 156 | 67.0 | 1.70 | 44 139 | 14.0 | 39.4 | 88 384 |
| Antigua and Barbuda | 0 | 0.0 | 0.00 | 0 | 0 | 0.0 | 220 |
| Argentina | 706 032 | 25.5 | 1.72 | 33 512 | 9.5 | 20.8 | 558 455 |
| Armenia | 1442 | 4.8 | 0.00 | 28 | 0.1 | 4.3 | 13 252 |
| Australia | 1 302 627 | 17.0 | 2.87 | 29 533 | 1.0 | 3.8 | 3 667 202 |
| Austria | 5011 | 6.0 | 0.02 | 322 | 0.1 | 1.5 | 23 959 |
| Azerbaijan | 16 082 | 18.6 | 0.04 | 652 | 1.7 | 16.3 | 40 306 |
| Bahamas | 3020 | 21.7 | 0.00 | 240 | 0.01 | 2.8 | 1975 |
| Bangladesh | 7083 | 4.9 | 0.01 | 193 | 5.0 | 3.0 | 110 667 |
| Barbados | 72 | 16.7 | 0.00 | 10 | 0.02 | 6.0 | 0 |
| Belarus | 12 025 | 5.8 | 0.04 | 405 | 0.6 | 6.5 | 78 854 |
| Belgium | 379 | 1.2 | 0.00 | 12 | 0.07 | 0.6 | 24 170 |
| Belize | 5372 | 23.4 | 0.01 | 210 | 0.08 | 20.4 | 11 003 |
| Benin | 21 917 | 19.5 | 0.05 | 107 | 2.5 | 18.7 | 19 947 |
| Bhutan | 12 636 | 26.9 | 0.02 | 514 | 0.3 | 32.4 | 9909 |
| Bolivia | 236 303 | 21.5 | 0.48 | 8729 | 2.2 | 17.6 | 424 512 |
| Bosnia and Herzegovina | 8379 | 16.4 | 0.02 | 381 | 0.74 | 21.8 | 18 531 |
| Botswana | 45 353 | 7.6 | 0.09 | 733 | 0.1 | 5.6 | 180 506 |
| Brazil | 2 453 800 | 28.8 | 4.97 | 100 658 | 31.8 | 14.8 | 2 451 035 |
| Brunei | 355 | 6.2 | 0.00 | 13 | 0.002 | 0.6 | 1598 |
| Bulgaria | 3104 | 2.8 | 0.01 | 85 | 0.2 | 2.5 | 10 261 |
| Burkina Faso | 121 213 | 44.2 | 0.25 | 174 | 9.5 | 41.9 | 6473 |
| Burundi | 14 010 | 50.3 | 0.03 | 539 | 6.1 | 47.5 | 5869 |
| Cambodia | 119 632 | 66.1 | 0.24 | 7551 | 9.0 | 53.6 | 40 212 |
| Cameroon | 78 044 | 16.4 | 0.15 | 1745 | 5.7 | 20.4 | 227 221 |
| Canada | 4 692 151 | 47.0 | 17.4 | 364 594 | 7.8 | 20.4 | 1 950 420 |
| Cape Verde | 1344 | 33.3 | 0.00 | 24 | 0.07 | 12.5 | 896 |
| Central African Republic | 68 612 | 11.0 | 0.14 | 2093 | 0.9 | 16.4 | 234 838 |
| Chad | 140 009 | 10.9 | 0.29 | 328 | 6.1 | 34.3 | 21 335 |
| Chile | 115 417 | 15.3 | 0.27 | 5593 | 0.9 | 4.6 | 100 782 |
| China | 1 639 469 | 17.1 | 3.93 | 38 041 | 118.9 | 8.3 | 3 449 516 |
| Colombia | 317 253 | 27.9 | 0.63 | 8883 | 7.3 | 14.1 | 491 232 |
| Congo R | 199 125 | 58.2 | 0.40 | 5939 | 2.4 | 39.9 | 90 018 |
| Congo DR | 1 641 579 | 70.0 | 3.21 | 69 002 | 56.8 | 57.4 | 368 562 |
| Costa Rica | 27 926 | 54.7 | 0.05 | 972 | 2.7 | 52.4 | 16 172 |
| Croatia | 2142 | 3.8 | 0.01 | 68 | 0.2 | 4.2 | 14 735 |
| Cuba | 11 863 | 10.7 | 0.03 | 415 | 0.9 | 8.1 | 53 180 |
| Cyprus | 612 | 6.6 | 0.00 | 27 | 0.2 | 14.1 | 4205 |
| Czech Republic | 111 | 0.1 | 0.00 | 0.9 | 0.1 | 0.9 | 50 385 |
| Denmark | 515 | 1.2 | 0.00 | 49 | 0.04 | 0.7 | 5516 |
| Djibouti | 7100 | 32.3 | 0.01 | 88 | 0.2 | 15.1 | 438 |
| Dominica | 189 | 25.0 | 0.00 | 7 | 0.01 | 18.1 | 94 |
| Dominican Republic | 7820 | 16.1 | 0.02 | 724 | 1.2 | 10.8 | 22 143 |
| Ecuador | 77 248 | 27.2 | 0.14 | 2981 | 4.2 | 23.4 | 46 559 |
| Egypt | 4858 | 0.5 | 0.01 | 78 | 8.9 | 8.0 | 16 846 |
| El Salvador | 2515 | 12.0 | 0.01 | 89 | 0.9 | 13.5 | 12 658 |
| Equatorial Guinea | 9027 | 32.2 | 0.02 | 236 | 0.2 | 12.4 | 6309 |
| Eritrea | 25 126 | 20.7 | 0.05 | 242 | 1.2 | 32.3 | 3151 |
| Estonia | 378 | 0.8 | 0.00 | 60 | 0.003 | 0.2 | 21 241 |
| Ethiopia | 442 130 | 39.2 | 0.88 | 19 612 | 60.7 | 49.2 | 136 830 |
| Faroe Islands, DK | 182 | 13.3 | 0.00 | 133 | 0.02 | 30.6 | 182 |
| Finland | 31 909 | 9.5 | 0.19 | 1642 | 0.06 | 1.0 | 191 927 |
| France | 8995 | 1.6 | 0.03 | 478 | 0.4 | 0.6 | 350 208 |
| French Guiana, FRA | 48 790 | 53.6 | 0.09 | 1385 | 0.2 | 49.3 | 15 323 |
| Gabon | 98 244 | 36.7 | 0.19 | 3166 | 0.5 | 22.8 | 83 921 |
| Gambia | 3767 | 33.3 | 0.01 | 42 | 0.7 | 26.5 | 90 |
| Georgia | 8331 | 12.0 | 0.02 | 355 | 0.5 | 13.0 | 43 817 |
| Germany | 2225 | 0.6 | 0.01 | 76 | 0.3 | 0.3 | 271 768 |
| Ghana | 56 356 | 23.6 | 0.11 | 1002 | 6.7 | 20.0 | 17 778 |
| Greece | 3614 | 2.7 | 0.01 | 221 | 0.2 | 1.8 | 33 020 |
| Greenland, DK | 117 907 | 28.7 | 0.23 | 1634 | 0.001 | 2.1 | 19 113 |
| Grenada | 0 | 0.0 | 0.00 | 0 | 0 | 0.0 | 170 |
| Guadeloupe, FRA | 125 | 7.7 | 0.00 | 1 | 0.02 | 3.8 | 501 |
| Guatemala | 41 257 | 37.9 | 0.09 | 2564 | 5.7 | 31.8 | 48 699 |
| Guinea | 32 435 | 13.2 | 0.07 | 406 | 2.3 | 16.4 | 28 088 |
| Guinea−Bissau | 3090 | 8.6 | 0.01 | 36 | 5.5 | 26.2 | 290 |
| Guyana | 100 942 | 47.0 | 0.30 | 631 | 0.1 | 16.3 | 29 140 |
| Haiti | 7667 | 27.6 | 0.02 | 420 | 1.9 | 16.0 | 9167 |
| Honduras | 19 317 | 17.2 | 0.04 | 1212 | 1.3 | 12.3 | 43 029 |
| Hong Kong, CN | 48 | 4.6 | 0.00 | 3 | 0.005 | 0.1 | 477 |
| Hungary | 2942 | 3.2 | 0.01 | 68 | 0.3 | 2.8 | 13 651 |
| Iceland | 31 414 | 30.5 | 0.12 | 1519 | 0.03 | 7.1 | 14 523 |
| India | 310 956 | 9.5 | 0.65 | 7523 | 109.8 | 7.8 | 1754 623 |
| Indonesia | 911 635 | 47.5 | 1.76 | 36 809 | 94.5 | 34.3 | 288 948 |
| Iran | 24 740 | 1.5 | 0.06 | 509 | 2.8 | 3.2 | 366 828 |
| Iraq | 8445 | 1.9 | 0.02 | 55 | 2.2 | 5.0 | 74 681 |
| Ireland | 9592 | 13.6 | 0.04 | 277 | 1.0 | 19.1 | 33 416 |
| Isle of Man, UK | 114 | 20.0 | 0.00 | 0.4 | 0.01 | 16.0 | 0 |
| Israel | 147 | 0.7 | 0.00 | 7 | 0.03 | 0.4 | 1982 |
| Italy | 9336 | 3.1 | 0.03 | 407 | 1.01 | 1.7 | 183 129 |
| Ivory Coast | 31 476 | 9.8 | 0.06 | 424 | 4.2 | 14.9 | 54 656 |
| Jamaica | 5659 | 51.5 | 0.01 | 216 | 1.2 | 40.7 | 656 |
| Japan | 52 469 | 13.9 | 0.13 | 2173 | 11.1 | 9.0 | 41 706 |
| Jordan | 2126 | 2.4 | 0.01 | 23 | 0.7 | 5.8 | 2331 |
| Kazakhstan | 1 635 500 | 60.2 | 4.74 | 54 230 | 9.2 | 47.5 | 122 081 |
| Kenya | 255 340 | 43.8 | 0.50 | 7612 | 17.2 | 31.8 | 60 455 |
| Korea DPR | 51 455 | 42.7 | 0.13 | 2328 | 12.5 | 48.1 | 57 789 |
| Korea | 8458 | 8.6 | 0.02 | 341 | 5.1 | 9.8 | 70 814 |
| Kyrgyzstan | 59 449 | 39.0 | 0.15 | 1994 | 1.9 | 28.0 | 42 992 |
| Laos | 81 911 | 34.6 | 0.17 | 3247 | 2.4 | 31.5 | 94 854 |
| Latvia | 853 | 1.3 | 0.00 | 19 | 0.04 | 2.1 | 29 048 |
| Lebanon | 574 | 5.5 | 0.00 | 20 | 0.2 | 3.2 | 2152 |
| Lesotho | 3028 | 10.0 | 0.01 | 83 | 0.1 | 4.6 | 5761 |
| Liberia | 11 255 | 10.1 | 0.02 | 204 | 0.8 | 15.1 | 3061 |
| Libya | 414 | 0.02 | 0.00 | 17 | 0.01 | 0.2 | 4642 |
| Liechtenstein | 0 | 0.0 | 0.00 | 0 | 0 | 0.0 | 160 |
| Lithuania | 1673 | 2.6 | 0.01 | 55 | 0.06 | 2.1 | 15 831 |
| Luxembourg | 0 | 0.0 | 0.00 | 0 | 0 | 0.0 | 2519 |
| Macao, CN | 0 | 0.0 | 0.00 | 0 | 0 | 0.0 | 33 |
| Macedonia | 1104 | 4.4 | 0.00 | 43 | 0.1 | 5.2 | 4677 |
| Madagascar | 232 348 | 39.6 | 0.49 | 18 666 | 8.3 | 27.9 | 81 963 |
| Malawi | 86 415 | 72.9 | 0.15 | 5576 | 13. 7 | 67.2 | 7865 |
| Malaysia | 142 823 | 43.3 | 0.28 | 4111 | 12.3 | 36.4 | 80 026 |
| Mali | 129 739 | 10.5 | 0.27 | 113 | 6.7 | 29.8 | 4203 |
| Malta | 64 | 20.0 | 0.00 | 2 | 0.01 | 2.7 | 0 |
| Martinique, FRA | 103 | 9.1 | 0.00 | 6 | 0.02 | 4.1 | 103 |
| Mauritania | 66 330 | 6.4 | 0.14 | 34 | 1.1 | 23.6 | 239 |
| Mauritius | 243 | 13.0 | 0.00 | 6 | 0.2 | 12.8 | 243 |
| Mexico | 553 719 | 28.1 | 1.19 | 20 787 | 37.6 | 29.5 | 470 049 |
| Moldova | 3212 | 9.5 | 0.01 | 117 | 0.3 | 9.9 | 8148 |
| Mongolia | 195 640 | 12.5 | 0.56 | 4989 | 0.4 | 13.1 | 284 653 |
| Montenegro | 2677 | 19.9 | 0.007 | 118 | 0.14 | 22.2 | 5746 |
| Morocco | 80 605 | 18.1 | 0.17 | 1727 | 8.2 | 21.9 | 65 532 |
| Mozambique | 519 462 | 64.8 | 1.05 | 36 001 | 21.7 | 65.9 | 41 769 |
| Myanmar | 303 529 | 44.7 | 0.63 | 12 474 | 16.6 | 30.6 | 162 436 |
| Namibia | 124 317 | 15.1 | 0.27 | 2099 | 1.1 | 44.2 | 42 419 |
| Nepal | 34 158 | 24.3 | 0.08 | 1132 | 2.6 | 8.4 | 78 921 |
| Netherlands | 625 | 1.5 | 0.00 | 19 | 0.6 | 3.2 | 21 047 |
| New Caledonia, FRA | 10 474 | 55.0 | 0.02 | 1528 | 0.09 | 31.5 | 2232 |
| New Zealand | 154 257 | 57.4 | 0.40 | 16 762 | 1.7 | 32.7 | 59 223 |
| Nicaragua | 39 423 | 30.4 | 0.08 | 1084 | 1.6 | 23.2 | 38 794 |
| Niger | 203 968 | 16.1 | 0.40 | 29 | 14.2 | 54.0 | 612 |
| Nigeria | 326 370 | 35.3 | 0.64 | 4216 | 60.1 | 27.5 | 223 356 |
| Norway | 145 127 | 44.8 | 0.63 | 10 635 | 0.8 | 13.9 | 77 977 |
| Oman | 110 | 0.1 | 0.00 | 0.6 | 0.009 | 0.2 | 2206 |
| Pakistan | 45 927 | 5.7 | 0.11 | 1034 | 12.3 | 5.2 | 275 078 |
| Panama | 25 408 | 32.5 | 0.05 | 580 | 1.8 | 41.9 | 29 808 |
| Papua New Guinea | 323 115 | 69.8 | 0.62 | 16 267 | 5.4 | 53.6 | 36 431 |
| Paraguay | 107 035 | 26.3 | 0.23 | 3868 | 1.5 | 22.1 | 55 810 |
| Peru | 284 716 | 22.2 | 0.57 | 7451 | 3.0 | 8.9 | 436 963 |
| Philippines | 50 178 | 16.7 | 0.10 | 1532 | 14.8 | 12.9 | 89 520 |
| Poland | 1593 | 0.5 | 0.01 | 24 | 0.4 | 0.9 | 122 482 |
| Portugal | 1294 | 1.4 | 0.00 | 75 | 0.2 | 2.1 | 82 587 |
| Puerto Rico, USA | 3424 | 37.6 | 0.01 | 197 | 1.0 | 30.3 | 585 |
| Reunion, FRA | 502 | 20.0 | 0.00 | 42 | 0.07 | 6.9 | 419 |
| Romania | 10 530 | 4.4 | 0.03 | 326 | 0.5 | 2.6 | 58 367 |
| Russia | 6 438 070 | 37.7 | 26.3 | 371 321 | 25.3 | 17.5 | 4 979 045 |
| Rwanda | 15 601 | 59.2 | 0.03 | 793 | 8.8 | 63.8 | 1652 |
| San Marino | 0 | 0.0 | 0.00 | 0 | 0 | 0.0 | 60 |
| Sao Tome and Principe | 273 | 27.3 | 0.00 | 18 | 0.02 | 7.1 | 0 |
| Saudi Arabia | 16 653 | 0.9 | 0.04 | 98 | 0.9 | 2.5 | 12 450 |
| Senegal | 64 738 | 33.0 | 0.13 | 310 | 6.4 | 36.8 | 1153 |
| Serbia | 4336 | 5.0 | 0.012 | 116 | 0.54 | 6.0 | 7879 |
| Sierra Leone | 11 296 | 15.8 | 0.02 | 196 | 0.8 | 8.9 | 9357 |
| Singapore | 93 | 14.3 | 0.00 | 2 | 0.7 | 11.0 | 0 |
| Slovakia | 971 | 2.0 | 0.00 | 36 | 0.1 | 2.7 | 12 397 |
| Slovenia | 786 | 3.9 | 0.00 | 21 | 0.08 | 3.9 | 1511 |
| Solomon Islands | 17 949 | 63.1 | 0.04 | 1047 | 0.3 | 43.3 | 596 |
| Somalia | 175 394 | 27.5 | 0.35 | 3082 | 3.1 | 17.9 | 63 834 |
| South Africa | 110 901 | 9.1 | 0.25 | 3650 | 5.3 | 8.8 | 469 191 |
| Spain | 14 670 | 2.9 | 0.03 | 733 | 2.7 | 5.6 | 389 260 |
| Sri Lanka | 17 570 | 26.8 | 0.04 | 457 | 3.4 | 15.6 | 11 968 |
| Sudan | 331 122 | 13.2 | 0.68 | 1358 | 13.3 | 28.4 | 375 172 |
| Suriname | 109 300 | 66.9 | 0.19 | 2898 | 0.3 | 53.4 | 13 396 |
| Svalbard, NOR | 4295 | 6.9 | 0.01 | 33 | 0.0 | 3.5 | 5391 |
| Swaziland | 1523 | 8.8 | 0.00 | 111 | 0.1 | 8.4 | 11 956 |
| Sweden | 90 842 | 20.2 | 0.38 | 7013 | 0.2 | 1.8 | 267 055 |
| Switzerland | 4396 | 10.7 | 0.01 | 376 | 0.1 | 1.6 | 31 131 |
| Syria | 15 380 | 8.3 | 0.04 | 312 | 2.3 | 10.4 | 20 091 |
| Taiwan, CN | 4191 | 11.7 | 0.01 | 134 | 1.6 | 6.8 | 15 657 |
| Tajikistan | 23 411 | 16.4 | 0.05 | 610 | 2.2 | 22.1 | 26 484 |
| Tanzania | 370 036 | 39.2 | 0.70 | 22 929 | 27.7 | 42.2 | 309 865 |
| Thailand | 123 041 | 23.9 | 0.25 | 3886 | 14.4 | 20.1 | 240 437 |
| Togo | 8826 | 15.5 | 0.01 | 72 | 1.3 | 14.8 | 4829 |
| Trinidad and Tobago | 88 | 1.7 | 0.00 | 2 | 0.06 | 4.2 | 1061 |
| Tunisia | 18 112 | 11.1 | 0.04 | 278 | 2.0 | 16.4 | 20 882 |
| Turkey | 15 771 | 2.0 | 0.04 | 539 | 3.2 | 3.7 | 464 426 |
| Turkmenistan | 69 410 | 14.2 | 0.17 | 603 | 0.7 | 11.0 | 48 733 |
| Turks and Caicos Islands, UK | 195 | 45.5 | 0.00 | 42 | 0.0 | 0.78 | 39 |
| Uganda | 84 870 | 36.0 | 0.15 | 3262 | 24.9 | 52.7 | 31 562 |
| Ukraine | 194 215 | 32.2 | 0.57 | 9254 | 9.3 | 23.5 | 239 720 |
| UK | 31 004 | 12.7 | 0.01 | 952 | 2.4 | 3.7 | 57 579 |
| USA | 2 596 936 | 27.0 | 7.13 | 12 026 | 45.1 | 13.3 | 2 717 657 |
| Uruguay | 49 526 | 28.0 | 0.12 | 2022 | 0.4 | 11.3 | 50 030 |
| Uzbekistan | 143 847 | 32.2 | 0.35 | 1925 | 7.8 | 22.5 | 37 122 |
| Vanuatu | 4883 | 33.1 | 0.01 | 301 | 0.06 | 18.9 | 111 |
| Venezuela | 243 781 | 26.7 | 0.49 | 10 222 | 2.9 | 10.2 | 346 519 |
| Vietnam | 84 207 | 25.6 | 0.17 | 4513 | 12.7 | 12.9 | 198 822 |
| Yemen | 38 009 | 7.2 | 0.06 | 197 | 4.9 | 14.5 | 1638 |
| Zambia | 519 166 | 69.0 | 1.05 | 26 861 | 13.7 | 68.4 | 38 444 |
| Zimbabwe | 148 151 | 37.3 | 0.31 | 6939 | 6.9 | 42.1 | 48 567 |
| Total | 42 452 767 | 28.0 | 100 | 1 674 285 | 1207.5 | 15.1 | 38 948 417 |
| Country | % territory | % global improving area | Total NPP gain ktC/41 years | LI affected people, millions | % total population in improving areas | Net NPP gain/loss ktC/41 years |
|---|---|---|---|---|---|---|
| Afghanistan | 17.6 | 0.39 | 2861 | 10.3 | 25.0 | 1097 |
| Albania | 42.2 | 0.03 | 2055 | 0.9 | 31.6 | 1950 |
| Algeria | 3.0 | 0.17 | 2975 | 6.7 | 15.0 | 2092 |
| Andorra | 77.8 | 0.00 | 44 | 0.05 | 67.0 | 37 |
| Angola | 7.1 | 0.20 | 2717 | 0.8 | 2.3 | −41 413 |
| Antigua and Barbuda | 50.0 | 0.00 | 30 | 0.06 | 53.5 | 30 |
| Argentina | 20.2 | 1.49 | 20 687 | 5.3 | 11.6 | −12 824 |
| Armenia | 44.5 | 0.04 | 1290 | 0.8 | 27.1 | 1263 |
| Australia | 47.7 | 8.82 | 153 122 | 5.6 | 21.2 | 123 588 |
| Austria | 28.6 | 0.08 | 4626 | 2.1 | 23.7 | 4303 |
| Azerbaijan | 46.5 | 0.11 | 2726 | 3.4 | 33.2 | 2074 |
| Bahamas | 14.2 | 0.00 | 107 | 0.07 | 1.7 | −132 |
| Bangladesh | 76.9 | 0.25 | 6198 | 122.8 | 71.8 | 6005 |
| Barbados | 0.0 | 0.00 | 4 | 0 | 0 | −6 |
| Belarus | 38.0 | 0.29 | 7762 | 2.3 | 24.6 | 7357 |
| Belgium | 79.2 | 0.08 | 2303 | 7.4 | 63.5 | 2291 |
| Belize | 47.9 | 0.02 | 590 | 0.2 | 50.1 | 380 |
| Benin | 17.7 | 0.05 | 889 | 1.5 | 11.6 | 783 |
| Bhutan | 21.1 | 0.02 | 372 | 0.1 | 18.7 | −142 |
| Bolivia | 38.6 | 0.94 | 12 703 | 4.9 | 40.2 | 3974 |
| Bosnia and Herzegovina | 36.2 | 0.06 | 1506 | 0.9 | 27.1 | 1124 |
| Botswana | 30.1 | 0.41 | 15 470 | 1.2 | 45.9 | 14 737 |
| Brazil | 28.8 | 5.41 | 160 665 | 53.9 | 25.0 | 60 007 |
| Brunei | 27.7 | 0.00 | 51 | 0.06 | 12.7 | 38 |
| Bulgaria | 9.3 | 0.03 | 1816 | 0.6 | 8.7 | 1731 |
| Burkina Faso | 2.4 | 0.01 | 88 | 0.3 | 1.3 | −85 |
| Burundi | 21.1 | 0.01 | 237 | 2.1 | 16.2 | −301 |
| Cambodia | 22.2 | 0.09 | 2192 | 4.4 | 26.2 | −5359 |
| Cameroon | 47.8 | 0.48 | 13 601 | 9.3 | 33.2 | 11 856 |
| Canada | 19.6 | 7.90 | 127 273 | 4.5 | 11.7 | −237 320 |
| Cape Verde | 22.2 | 0.00 | 2 | 0.1 | 25.2 | −21 |
| Central African Republic | 37.7 | 0.51 | 8017 | 1.7 | 31.0 | 5924 |
| Chad | 1.7 | 0.05 | 77 | 0.7 | 4.1 | −250 |
| Chile | 13.3 | 0.26 | 5513 | 1.2 | 6.2 | −79 |
| China | 36.0 | 9.00 | 32 441 | 759.1 | 53.2 | 286 369 |
| Colombia | 43.1 | 1.06 | 24 141 | 24.3 | 46.8 | 15 259 |
| Congo R | 26.3 | 0.20 | 3236 | 0.9 | 15.4 | −2703 |
| Congo DR | 15.7 | 0.79 | 9972 | 12.5 | 12.6 | −59 030 |
| Costa Rica | 32.0 | 0.04 | 353 | 0.8 | 16.4 | −618 |
| Croatia | 26.1 | 0.04 | 1864 | 0.6 | 14.5 | 1796 |
| Cuba | 48.0 | 0.12 | 4342 | 4.4 | 39.7 | 3927 |
| Cyprus | 45.5 | 0.01 | 527 | 0.2 | 17.5 | 501 |
| Czech Republic | 63.9 | 0.17 | 10 193 | 6.0 | 57.0 | 10 193 |
| Denmark | 12.8 | 0.02 | 932 | 1.1 | 18.4 | 884 |
| Djibouti | 2.0 | 0.00 | 0.4 | 0.1 | 0.7 | −88 |
| Dominica | 12.5 | 0.00 | 9 | 0.01 | 14.4 | 2 |
| Dominican Republic | 45.4 | 0.05 | 1311 | 3.4 | 30.0 | 587 |
| Ecuador | 16.4 | 0.09 | 3517 | 3.2 | 17.7 | 537 |
| Egypt | 1.7 | 0.04 | 1728 | 15.9 | 14.3 | 1650 |
| El Salvador | 60.2 | 0.03 | 640 | 3.9 | 62.3 | 552 |
| Equatorial Guinea | 22.5 | 0.01 | 276 | 0.2 | 9.1 | 41 |
| Eritrea | 2.6 | 0.01 | 177 | 0.5 | 14.5 | −66 |
| Estonia | 47.0 | 0.08 | 3239 | 0.2 | 14.2 | 3179 |
| Ethiopia | 12.1 | 0.30 | 7801 | 7.7 | 6.2 | −11 811 |
| Faroe Islands, DK | 13.3 | 0.00 | 4 | 0.002 | 3.3 | −9 |
| Finland | 57.0 | 0.90 | 35 403 | 2.3 | 42.1 | 33 761 |
| France | 64.0 | 1.10 | 42 840 | 33.7 | 52.1 | 42 362 |
| French Guiana, FRA | 16.8 | 0.03 | 400 | 0.05 | 17.4 | −986 |
| Gabon | 31.4 | 0.18 | 4535 | 0.4 | 15.1 | 1369 |
| Gambia | 0.8 | 0.00 | 2 | 0.005 | 0.2 | −40 |
| Georgia | 62.9 | 0.13 | 6844 | 1.5 | 40.2 | 6489 |
| Germany | 76.1 | 0.92 | 35 536 | 53.1 | 63.7 | 35 459 |
| Ghana | 7.5 | 0.04 | 556 | 0.8 | 2.5 | −445 |
| Greece | 25.0 | 0.09 | 5648 | 1.8 | 17.5 | 5427 |
| Greenland, DK | 4.7 | 0.04 | 248 | 0 | 0.6 | −1385 |
| Grenada | 50.0 | 0.00 | 19 | 0.05 | 42.5 | 19 |
| Guadeloupe, FRA | 30.8 | 0.00 | 46 | 0.09 | 21.7 | 45 |
| Guatemala | 44.7 | 0.11 | 3415 | 8.9 | 50.1 | 851 |
| Guinea | 11.4 | 0.06 | 1799 | 1.6 | 11.3 | 1393 |
| Guinea−Bissau | 0.8 | 0.00 | 11 | 0.02 | 1.1 | −24 |
| Guyana | 13.6 | 0.06 | 785 | 0.04 | 5.4 | −1846 |
| Haiti | 33.0 | 0.02 | 490 | 2.9 | 25.4 | 70 |
| Honduras | 38.4 | 0.10 | 3190 | 3.3 | 31.8 | 1979 |
| Hong Kong, CN | 45.5 | 0.00 | 76 | 3.0 | 40.2 | 72 |
| Hungary | 14.7 | 0.04 | 2052 | 1.4 | 13.7 | 1984 |
| Iceland | 14.1 | 0.06 | 656 | 0.02 | 6.0 | −863 |
| India | 53.4 | 3.97 | 99 132 | 815.1 | 57.5 | 91 609 |
| Indonesia | 15.1 | 0.61 | 13 240 | 51.6 | 18.7 | −23 569 |
| Iran | 22.3 | 0.92 | 14 297 | 29.9 | 33.7 | 13 789 |
| Iraq | 17.1 | 0.19 | 1905 | 14.0 | 31.5 | 1850 |
| Ireland | 47.6 | 0.14 | 3082 | 1.9 | 37.5 | 2805 |
| Isle of Man, UK | 0.0 | 0.00 | 0.4 | 0 | 0 | −0.03 |
| Israel | 9.5 | 0.01 | 187 | 1.2 | 13.6 | 180 |
| Italy | 60.8 | 0.53 | 23 341 | 25.3 | 42.9 | 22 934 |
| Ivory Coast | 17.0 | 0.12 | 3499 | 3.4 | 12.0 | 3075 |
| Jamaica | 6.0 | 0.00 | 42 | 0.09 | 3.1 | −174 |
| Japan | 11.0 | 0.11 | 5032 | 8.9 | 7.2 | 2860 |
| Jordan | 2.6 | 0.01 | 76 | 0.9 | 8.4 | 53 |
| Kazakhstan | 4.5 | 0.39 | 6527 | 0.6 | 3.0 | −47 703 |
| Kenya | 10.4 | 0.13 | 2709 | 4.1 | 7.5 | −4903 |
| Korea DPR | 48.0 | 0.16 | 2652 | 7.8 | 30.1 | 324 |
| Korea | 71.9 | 0.18 | 5236 | 21.9 | 42.2 | 4895 |
| Kyrgyzstan | 21.7 | 0.12 | 2079 | 0.8 | 11.4 | 84 |
| Laos | 40.1 | 0.21 | 3929 | 2.8 | 37.7 | 682 |
| Latvia | 45.0 | 0.11 | 3855 | 0.5 | 29.4 | 3832 |
| Lebanon | 20.7 | 0.01 | 171 | 0.3 | 6.0 | 151 |
| Lesotho | 19.0 | 0.01 | 308 | 0.8 | 34.6 | 225 |
| Liberia | 2.8 | 0.01 | 310 | 0.1 | 2.5 | 106 |
| Libya | 0.3 | 0.01 | 162 | 0.3 | 4.2 | 145 |
| Liechtenstein | 100.0 | 0.00 | 9 | 0.04 | 100 | 9 |
| Lithuania | 24.3 | 0.07 | 2113 | 0.7 | 26.1 | 2057 |
| Luxembourg | 97.8 | 0.01 | 194 | 0.6 | 90.9 | 194 |
| Macao, CN | 100.0 | 0.00 | 0.4 | 0.5 | 68.1 | 0.4 |
| Macedonia | 18.5 | 0.01 | 691 | 0.5 | 22.0 | 649 |
| Madagascar | 14.0 | 0.19 | 5036 | 3.3 | 11.2 | −13 630 |
| Malawi | 6.64 | 0.01 | 361 | 0.8 | 4.1 | −5214 |
| Malaysia | 24.3 | 0.17 | 2109 | 3.3 | 9.7 | −2002 |
| Mali | 0.3 | 0.01 | 70 | 0.1 | 0.6 | −43 |
| Malta | 0.0 | 0.00 | 4 | 0 | 0 | 2 |
| Martinique, FRA | 9.1 | 0.00 | 9 | 0.04 | 11.9 | 3 |
| Mauritania | 0.02 | 0.00 | 7 | 0.004 | 0.1 | −28 |
| Mauritius | 13.0 | 0.00 | 57 | 0.06 | 4.3 | 52 |
| Mexico | 23.8 | 1.10 | 23 882 | 16.0 | 12.5 | 3095 |
| Moldova | 24.1 | 0.03 | 825 | 0.8 | 24.4 | 708 |
| Mongolia | 18.2 | 0.89 | 14 403 | 1.2 | 35.3 | 9415 |
| Montenegro | 42.7 | 0.016 | 342 | 0.194 | 31.0 | 224 |
| Morocco | 14.7 | 0.15 | 3162 | 5.1 | 13.6 | 1434 |
| Mozambique | 5.2 | 0.09 | 2831 | 1.0 | 3.0 | −33 170 |
| Myanmar | 23.9 | 0.37 | 7792 | 11.8 | 21.7 | −4682 |
| Namibia | 5.1 | 0.10 | 3206 | 0.04 | 1.4 | 1107 |
| Nepal | 56.1 | 0.11 | 4005 | 21.2 | 69.4 | 2874 |
| Netherlands | 50.7 | 0.06 | 2205 | 6.8 | 38.5 | 2186 |
| New Caledonia, FRA | 11.7 | 0.01 | 214 | 0.02 | 5.5 | −1314 |
| New Zealand | 22.0 | 0.17 | 4361 | 0.3 | 5.1 | −12 401 |
| Nicaragua | 30.0 | 0.08 | 1926 | 2.1 | 30.4 | 843 |
| Niger | 0.05 | 0.00 | 0.2 | 0.03 | 0.1 | −28 |
| Nigeria | 24.2 | 0.48 | 8345 | 48.6 | 22.2 | 4128 |
| Norway | 24.1 | 0.37 | 6606 | 0.9 | 17.2 | −4029 |
| Oman | 1.0 | 0.01 | 78 | 0.5 | 11.5 | 78 |
| Pakistan | 34.2 | 0.73 | 5542 | 104.8 | 44.5 | 4508 |
| Panama | 38.1 | 0.06 | 751 | 1.1 | 24.4 | 172 |
| Papua New Guinea | 7.9 | 0.08 | 1578 | 0.6 | 5.5 | −14 689 |
| Paraguay | 13.7 | 0.13 | 1191 | 0.5 | 7.3 | −2677 |
| Peru | 34.0 | 0.96 | 18 999 | 7.6 | 22.3 | 11 547 |
| Philippines | 29.8 | 0.19 | 4493 | 19.9 | 17.2 | 2961 |
| Poland | 39.2 | 0.43 | 20 079 | 12.8 | 32.2 | 20 055 |
| Portugal | 89.4 | 0.22 | 11 355 | 6.6 | 64.2 | 11 280 |
| Puerto Rico, USA | 6.4 | 0.00 | 50 | 0.3 | 7.9 | −147 |
| Reunion, FRA | 16.7 | 0.00 | 37 | 0.07 | 7.0 | −5 |
| Romania | 24.6 | 0.18 | 8444 | 7.4 | 37.6 | 8118 |
| Russia | 29.2 | 22.17 | 467 475 | 43.1 | 29.8 | 96 154 |
| Rwanda | 6.3 | 0.00 | 188 | 0.3 | 2.4 | −605 |
| San Marino | 100.0 | 0.00 | 5 | 0.02 | 72.0 | 5 |
| Sao Tome and Principe | 0.0 | 0.00 | 2 | 0 | 0 | −15 |
| Saudi Arabia | 0.6 | 0.03 | 252 | 0.5 | 1.3 | 155 |
| Senegal | 0.6 | 0.00 | 19 | 0.03 | 0.2 | −291 |
| Serbia | 9.0 | 0.024 | 311 | 0.49 | 5.5 | 195 |
| Sierra Leone | 13.0 | 0.02 | 622 | 0.9 | 10.1 | 427 |
| Singapore | 0.0 | 0.00 | 1 | 0 | 0 | −0.5 |
| Slovakia | 25.4 | 0.04 | 2924 | 1.4 | 24.8 | 2888 |
| Slovenia | 7.5 | 0.01 | 201 | 0.09 | 4.1 | 180 |
| Solomon Islands | 2.1 | 0.00 | 5 | 0.01 | 1.4 | −1042 |
| Somalia | 10.0 | 0.14 | 1680 | 1.6 | 8.9 | −1401 |
| South Africa | 38.5 | 1.16 | 33 315 | 21.1 | 35.3 | 29 665 |
| Spain | 77.1 | 1.09 | 43 661 | 24.2 | 50.9 | 42 929 |
| Sri Lanka | 18.2 | 0.03 | 641 | 1.9 | 8.6 | 184 |
| Sudan | 15.0 | 0.84 | 18 905 | 8.9 | 19 | 17 547 |
| Suriname | 8.2 | 0.03 | 283 | 0.04 | 6.9 | −2615 |
| Svalbard, NOR | 8.7 | 0.01 | 69 | 0.0001 | 4.6 | 37 |
| Swaziland | 68.9 | 0.03 | 1390 | 1.0 | 82.1 | 1279 |
| Sweden | 59.4 | 1.21 | 39 679 | 3.5 | 33.5 | 32 665 |
| Switzerland | 75.4 | 0.10 | 4515 | 6.9 | 78.7 | 4139 |
| Syria | 10.9 | 0.05 | 1222 | 3.8 | 17.0 | 910 |
| Taiwan, CN | 43.5 | 0.04 | 1742 | 6.4 | 26.8 | 1608 |
| Tajikistan | 18.5 | 0.07 | 1116 | 3.1 | 30.7 | 506 |
| Tanzania | 32.8 | 0.64 | 22 027 | 10.2 | 15.6 | −902 |
| Thailand | 46.8 | 0.54 | 15 666 | 24.3 | 33.9 | 11 779 |
| Togo | 8.5 | 0.01 | 237 | 0.5 | 5.9 | 164 |
| Trinidad and Tobago | 20.7 | 0.00 | 51 | 0.3 | 18.3 | 49 |
| Tunisia | 12.8 | 0.05 | 1091 | 3.1 | 24.8 | 813 |
| Turkey | 59.5 | 1.27 | 54 429 | 34.8 | 40.8 | 53 890 |
| Turkmenistan | 10.0 | 0.13 | 1111 | 0.6 | 9.7 | 508 |
| Turks and Caicos Islands, UK | 9.1 | 0.00 | 12 | 0.0001 | 0.1 | −31 |
| Uganda | 13.4 | 0.06 | 2240 | 3.6 | 7.6 | −1022 |
| Ukraine | 39.7 | 0.77 | 16 493 | 13.3 | 33.6 | 7239 |
| UK | 23.5 | 0.19 | 4288 | 8.5 | 12.6 | 3336 |
| USA | 28.2 | 8.14 | 128 583 | 43.8 | 13.0 | 8324 |
| Uruguay | 28.4 | 0.13 | 2698 | 0.3 | 8.5 | 676 |
| Uzbekistan | 8.3 | 0.01 | 938 | 4.5 | 13.0 | −987 |
| Vanuatu | 0.8 | 0.00 | 2 | 0.003 | 0.9 | −299 |
| Venezuela | 38.0 | 0.75 | 15 649 | 12.7 | 44.7 | 5427 |
| Vietnam | 60.3 | 0.44 | 12 832 | 61.3 | 62.4 | 8319 |
| Yemen | 0.3 | 0.00 | 47 | 0.3 | 0.8 | −149 |
| Zambia | 5.1 | 0.08 | 1363 | 1.0 | 4.8 | −25 498 |
| Zimbabwe | 12.4 | 0.11 | 4550 | 2.1 | 12.7 | −2389 |
| Total | 26.2 | 100 | 2 368 151 | 2851 | 35.8 | 6936 |
* Countries or regions with no degradation are not listed
Table 3.
Land degradation comparison between periods 1981–2003 and 1981–2021
| Country | Degrading area 1981–2003 km2 | Degrading area 1981–2021 km2 | Change 1981–2003 to 1981–2021 km2 | Change 1981–2003 to 1981–2021 % | NPP loss 1981–2003 ktC/23y | NPP loss 1981–2021 ktC/41y | Change 1981–2003 to 1981–2021 ktC | Change 1981–2003 to 1981–2021 ktC/y | Affected people 1981–2003 million | Affected people 1981–2021 million | Change 1981–2003 to 1981–2021 million |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Afghanistan | 7658 | 117 876 | 110 218 | 1439 | 63 | 1763 | 1700 | 40 | 0.7 | 8.8 | 8.1 |
| Albania | 2334 | 1565 | − 769 | − 33 | 47 | 105 | 58 | 0.5 | 0.1 | 0.03 | − 0.1 |
| Algeria | 63 475 | 49 408 | − 14 067 | − 22 | 1977 | 883 | − 1095 | − 64 | 7.2 | 6.1 | − 1.1 |
| Andorra | 281 | 52 | − 229 | − 82 | 3 | 7 | 5 | 0.1 | 0.02 | 0.01 | − 0.01 |
| Angola | 828 029 | 835 156 | 7127 | 0.9 | 37 603 | 44 129 | 6527 | − 559 | 9.3 | 14.0 | 4.8 |
| Argentina | 902 438 | 706 032 | − 196 406 | − 22 | 23 556 | 33 511 | 9955 | − 206 | 14.5 | 9.5 | − 5.0 |
| Armenia | 743 | 1442 | 699 | 94 | 14 | 27 | 13 | 0.1 | 0.08 | 0.1 | 0.04 |
| Australia | 1 994 268 | 1 302 627 | − 691 641 | − 35 | 46 905 | 29 533 | − 17 371 | − 1319 | 2.2 | 1.0 | − 1.2 |
| Austria | 28 291 | 5011 | − 23 280 | − 823 | 2 | 322 | 320 | 8 | 1.7 | 0.1 | − 1.6 |
| Azerbaijan | 2633 | 16 082 | 13 449 | 511 | 123 | 652 | 528 | 11 | 0.2 | 1.7 | 1.5 |
| Bahamas | 4130 | 3020 | − 1110 | − 27 | 195 | 239 | 44 | − 3 | 0.02 | 0.01 | − 0.01 |
| Bangladesh | 68 422 | 7083 | − 61 339 | − 90 | 2851 | 193 | − 2658 | − 119 | 72.7 | 5.0 | − 67.7 |
| Barbados | 0 | 72 | 72 | 100 | 0 | 10 | 10 | 0.2 | 0 | 0.01 | 0.01 |
| Belarus | 4053 | 12 025 | 7972 | 197 | 82 | 405 | 33 | 6 | 0.3 | 0.6 | 0.4 |
| Belgium | 5404 | 379 | − 5025 | − 93 | 70 | 12 | − 58 | − 3 | 1.4 | 0.1 | − 1.3 |
| Belize | 3026 | 5372 | 2346 | 78 | 66 | 210 | 144 | 2 | 0.04 | 0.08 | 0.04 |
| Benin | 14 155 | 21 917 | 7762 | 55 | 373 | 107 | − 266 | − 14 | 0.9 | 2.5 | 1.6 |
| Bhutan | 27 011 | 12 636 | − 14 375 | − 53 | 1706 | 514 | − 1192 | − 62 | 1.3 | 0.3 | − 1.1 |
| Bolivia | 60 339 | 236 303 | 175 964 | 292 | 1656 | 8729 | 7073 | 141 | 1.5 | 2.2 | 0.6 |
| Bosnia and Herzegovina | 7737 | 8379 | 642 | 8 | 158 | 381 | 223 | 2 | 0.7 | 0.7 | − 0.001 |
| Botswana | 97 831 | 45 353 | − 52 478 | − 54 | 4112 | 733 | − 3378 | − 161 | 0.5 | 0.1 | − 0.3 |
| Brazil | 1 881 702 | 2 453 800 | 572 098 | 30 | 63 346 | 100 658 | 37 312 | 299 | 46.6 | 31.8 | − 14.8 |
| Brunei | 2663 | 355 | − 2308 | − 87 | 128 | 13 | − 115 | − 5 | 0.3 | 0.02 | − 0.3 |
| Bulgaria | 9139 | 3104 | − 6035 | − 66 | 178 | 85 | − 93 | − 6 | 0.9 | 0.2 | − 0.7 |
| Burkina Faso | 9255 | 121 213 | 111 958 | 1209 | 124 | 174 | 50 | − 1 | 1.1 | 9.5 | 8.4 |
| Burundi | 13 516 | 14 010 | 494 | 4 | 973 | 539 | − 434 | − 29 | 3.9 | 6.1 | 2.2 |
| Cambodia | 77 958 | 119 632 | 41 674 | 54 | 2525 | 7551 | 5026 | 74 | 3.6 | 9.0 | 5.4 |
| Cameroon | 151 605 | 78 044 | − 73 561 | − 49 | 9657 | 1745 | − 7911 | − 377 | 4.3 | 5.7 | 1.4 |
| Canada | 1 985 085 | 4 692 151 | 2 707 066 | 136 | 93 964 | 364 594 | 270 630 | 4807 | 5.5 | 7.8 | 2.3 |
| Cape Verde | 375 | 1344 | 969 | 258 | 12 | 24 | 12 | 0.1 | 0.1 | 0.1 | 0.01 |
| Central African Republic | 126 927 | 68 612 | − 58 315 | − 46 | 3702 | 2093 | − 1609 | − 110 | 0.9 | 0.90 | 0.02 |
| Chad | 52 735 | 140 009 | 87 274 | 166 | 627 | 328 | − 299 | − 19 | 1.0 | 6.1 | 5.0 |
| Chile | 77 230 | 115 417 | 38 187 | 49 | 1951 | 5592 | 3641 | 52 | 1.6 | 0.9 | − 0.7 |
| China | 2 193 697 | 1 639 469 | − 554 228 | − 25 | 58 840 | 38 041 | − 20 799 | − 1630 | 457.2 | 118.9 | − 338.3 |
| Colombia | 291 295 | 317 253 | 25 958 | 9 | 178 | 8883 | − 9117 | − 566 | 16.3 | 7.3 | − 9.0 |
| Comoros | 181 | 0 | − 181 | − 100 | 18 | 0 | − 18 | − 1 | 0.1 | 0 | − 0.1 |
| Congo R | 201 614 | 199 125 | − 2489 | − 1 | 20 091 | 594 | − 14 151 | − 723 | 1.9 | 2.4 | 0.5 |
| Congo DR | 1 346 914 | 1 641 579 | 294 665 | 22 | 3404 | 69 002 | 65 597 | 1535 | 32.1 | 56.8 | 24.7 |
| Costa Rica | 14 691 | 27 926 | 13 235 | 90 | 529 | 972 | 442 | 1 | 0.6 | 2.7 | 2.1 |
| Croatia | 2822 | 2142 | − 680 | − 24 | 28 | 68 | 40 | 0.4 | 0.3 | 0.1 | − 0.2 |
| Cuba | 32 430 | 11 863 | − 20 567 | − 63 | 755 | 415 | − 340 | − 23 | 3.1 | 0.9 | − 2.1 |
| Cyprus | 266 | 612 | 346 | 130 | 9 | 27 | 18 | 0.3 | 0.005 | 0.2 | 0.2 |
| Czech Republic | 11 218 | 111 | − 11 107 | − 99 | 304 | 1 | − 303 | − 13 | 1.4 | 0.1 | − 1.3 |
| Denmark | 91 | 515 | 424 | 465 | 0.3 | 49 | 48 | 1 | 0.01 | 0.04 | 0.03 |
| Djibouti | 6107 | 7100 | 993 | 16 | 19 | 88 | 69 | 1 | 0.7 | 0.2 | − 0.6 |
| Dominica | 126 | 189 | 63 | 50 | 9 | 7 | − 2 | − 0.2 | 0.004 | 0.01 | 0.01 |
| Dominican Republic | 18 507 | 7820 | − 10 687 | − 58 | 561 | 724 | 163 | − 7 | 3.8 | 1.2 | − 2.6 |
| Ecuador | 40 136 | 77 248 | 37 112 | 93 | 2401 | 2980 | 579 | − 32 | 2.2 | 4.2 | 2.0 |
| Egypt | 36 514 | 4858 | − 31 656 | − 87 | 17 | 78 | 61 | 1 | 10.1 | 8.9 | − 1.2 |
| El Salvador | 5585 | 2515 | − 3070 | − 55 | 235 | 89 | − 146 | − 8 | 1.1 | 0.9 | − 0.3 |
| Equatorial Guinea | 15 376 | 9027 | − 6349 | − 41 | 1435 | 236 | − 1198 | − 57 | 0.2 | 0.2 | − 0.04 |
| Eritrea | 15 573 | 25 126 | 9553 | 61 | 33 | 242 | 209 | 4 | 0.2 | 1.2 | 1.0 |
| Estonia | 423 | 378 | − 45 | − 10 | 4 | 60 | 56 | 1 | 0.009 | 0.003 | − 0.006 |
| Ethiopia | 296 812 | 442 130 | 145 318 | 49 | 14 276 | 19 612 | 5336 | − 142 | 20.7 | 60.7 | 40.0 |
| Faroe Islands, DK | 0 | 182 | 182 | 100 | 0 | 13 | 13 | 0.3 | 0 | 0.02 | 0.02 |
| Falkland Islands | 1635 | 0 | − 1635 | − 100 | 51 | 0 | − 51 | − 2 | 0.0004 | 0 | − 0.0004 |
| Finland | 27 779 | 31 909 | 4130 | 15 | 328 | 1642 | 1314 | 26 | 0.2 | 0.06 | − 0.1 |
| France | 46 691 | 8995 | − 37 696 | − 81 | 605 | 478 | − 127 | − 15 | 6.2 | 0.4 | − 5.8 |
| French Guiana, FRA | 24 947 | 48 790 | 23 843 | 96 | 1033 | 1385 | 352 | − 11 | 0.03 | 0.2 | 0.1 |
| Gabon | 172 865 | 98 244 | − 74 621 | − 43 | 23 | 3166 | 3143 | 76 | 0.5 | 0.5 | 0.07 |
| Gambia | 1396 | 3767 | 2371 | 169 | 26 | 42 | 16 | − 0.1 | 0.03 | 0.07 | 0.07 |
| Georgia | 5647 | 8331 | 2684 | 48 | 141 | 355 | 214 | 3 | 0.6 | 0.5 | − 0.1 |
| Germany | 32 479 | 2225 | − 30 254 | − 93 | 730 | 76 | − 654 | − 30 | 5.7 | 0.3 | − 5.4 |
| Ghana | 50 365 | 56 356 | 5991 | 12 | 2521 | 1002 | − 1519 | − 85 | 4.5 | 6.7 | 2.2 |
| Greece | 6914 | 3614 | − 3300 | − 48 | 117 | 221 | 104 | 0.3 | 0.7 | 0.2 | − 0.5 |
| Greenland, DK | 0 | 117 907 | 117 907 | 100 | 0 | 1634 | 1634 | 40 | 0 | 0.001 | 0.001 |
| Guadeloupe, FRA | 0 | 125 | 125 | 100 | 0 | 1 | 1 | 0.03 | 0 | 0.01 | 0.01 |
| Guatemala | 55 884 | 41 257 | − 14 627 | − 26 | 2867 | 2564 | − 303 | − 62 | 3.9 | 5.7 | 1.7 |
| Guinea | 91 415 | 32 435 | − 58 980 | − 65 | 2008 | 406 | − 1602 | − 8 | 4.1 | 2.2 | − 1.8 |
| Guinea − Bissau | 18 851 | 3090 | − 15 761 | − 84 | 452 | 36 | − 416 | − 19 | 0.5 | 0.6 | 0.02 |
| Guyana | 93 448 | 100 942 | 7494 | 8 | 230 | 2631 | 2401 | 54 | 0.2 | 0.1 | − 0.07 |
| Haiti | 11 821 | 7667 | − 4154 | − 35 | 383 | 420 | 37 | − 6 | 2.8 | 1.9 | − 1.0 |
| Honduras | 30 145 | 19 317 | − 10 828 | − 36 | 1451 | 1212 | − 239 | − 34 | 1.7 | 1.3 | − 0.4 |
| Hong Kong CN | 0 | 48 | 48 | 100 | 0 | 3 | 3 | 0.07 | 0 | 5.1 | 5.1 |
| Hungary | 31 398 | 2942 | − 28 456 | − 91 | 766 | 68 | − 697 | − 32 | 2.8 | 0.3 | − 2.5 |
| Iceland | 34 483 | 31 414 | − 3069 | − 9 | 2693 | 1519 | − 1174 | − 80 | 0.06 | 0.03 | − 0.03 |
| India | 592 498 | 310 956 | − 281 542 | − 48 | 22 484 | 7523 | − 14 960 | − 794 | 177.4 | 109.8 | − 67.7 |
| Indonesia | 1 028 942 | 911 635 | − 117 307 | − 11 | 67 680 | 36 810 | − 30 870 | − 2045 | 86.7 | 94.5 | 7.8 |
| Iran | 29 190 | 24 740 | − 4450 | − 15 | 282 | 509 | 226 | 0.1 | 2.6 | 2.8 | 0.2 |
| Iraq | 28 000 | 8445 | − 19 555 | − 70 | 1030 | 55 | − 975 | − 43 | 1.7 | 2.2 | 0.5 |
| Ireland | 6416 | 9592 | 3176 | 50 | 1363 | 277 | − 1086 | − 53 | 0.7 | 0.9 | 0.3 |
| Isle of Man, UK | 0 | 114 | 114 | 100 | 0 | 0.4 | 0.4 | 0.01 | 0 | 0.01 | 0.01 |
| Israel | 3085 | 147 | − 2938 | − 95 | 50 | 7 | − 43 | − 2 | 2.0 | 0.03 | − 2.0 |
| Italy | 28 693 | 9336 | − 19 357 | − 68 | 696 | 407 | − 289 | − 20 | 4.3 | 1.0 | − 3.3 |
| Ivory Coast | 117 595 | 31 476 | − 86 119 | − 73 | 6221 | 424 | − 5797 | − 260 | 6.3 | 4.2 | − 2.1 |
| Jamaica | 3372 | 5659 | 2287 | 68 | 107 | 216 | 108 | 0.6 | 0.7 | 1.1 | 0.4 |
| Japan | 130 563 | 52 469 | − 78 094 | − 60 | 427 | 2173 | − 2096 | − 133 | 29.7 | 11.1 | − 18.6 |
| Jordan | 13 574 | 2126 | − 11 448 | − 84 | 101 | 23 | − 78 | − 4 | 1.6 | 0.7 | − 0.9 |
| Kazakhstan | 487 083 | 1 635 500 | 1 148 417 | 236 | 5308 | 54 230 | 48 922 | 1092 | 2.1 | 9.2 | 7.1 |
| Kenya | 104 994 | 255 340 | 150 346 | 143 | 6613 | 7612 | 999 | − 102 | 11.8 | 17.2 | 5.4 |
| Korea DPR | 60 959 | 51 455 | − 9504 | − 16 | 2206 | 2328 | 122 | − 39 | 10.1 | 12.5 | 2.4 |
| Korea | 54 091 | 8458 | − 45 633 | − 84 | 1571 | 340 | − 1231 | − 60 | 14.4 | 5.1 | − 9.3 |
| Kyrgyzstan | 23 189 | 59 449 | 36 260 | 156 | 282 | 1994 | 1712 | 36 | 0.7 | 1.9 | 1.2 |
| Laos | 133 395 | 81 911 | − 51 484 | − 39 | 7233 | 3247 | − 3986 | − 235 | 3.3 | 2.4 | − 0.9 |
| Latvia | 4416 | 853 | − 3563 | − 81 | 136 | 19 | − 117 | − 5 | 0.2 | 0.04 | − 0.2 |
| Lebanon | 704 | 574 | − 130 | − 19 | 2 | 19 | 17 | 0.4 | 0.1 | 0.2 | 0.05 |
| Lesotho | 10 344 | 3028 | − 7316 | − 71 | 485 | 83 | − 402 | − 19 | 0.9 | 0.1 | − 0.8 |
| Liberia | 50 500 | 11 255 | − 39 245 | − 78 | 2098 | 204 | − 1894 | − 86 | 1.4 | 0.8 | − 0.6 |
| Libya | 12 672 | 414 | − 12 258 | − 97 | 86 | 17 | − 69 | − 3 | 0.4 | 0.01 | − 0.4 |
| Lithuania | 2664 | 1673 | − 991 | − 37 | 55 | 55 | 10 | − 1 | 0.1 | 0.06 | − 0.07 |
| Macedonia | 1757 | 1104 | − 653 | − 37 | 33 | 43 | 10 | − 0.4 | 0.03 | 0.1 | 0.08 |
| Madagascar | 163 843 | 232 348 | 68 505 | 42 | 6678 | 18 666 | 11 987 | 165 | 3.9 | 8.3 | 4.4 |
| Malawi | 30 869 | 86 415 | 55 546 | 179 | 1371 | 5576 | 4205 | 76 | 2.5 | 13.7 | 11.2 |
| Malaysia | 175 817 | 142 823 | − 32 994 | − 19 | 9258 | 4111 | − 5147 | − 302 | 10.4 | 12.3 | 1.9 |
| Mali | 35 637 | 129 739 | 94 102 | 264 | 358 | 113 | − 245 | − 13 | 0.9 | 6.7 | 5.9 |
| Malta | 0 | 64 | 64 | 100 | 0 | 2 | 21 | 0.05 | 0 | 0.01 | 0.01 |
| Martinique, FRA | 0 | 103 | 103 | 100 | 0 | 6 | 6 | 0.1 | 0 | 0.02 | 0.02 |
| Mauritania | 6301 | 66 330 | 60 029 | 953 | 18 | 34 | 16 | 0.06 | 0.07 | 1.1 | 1.1 |
| Mauritius | 0 | 243 | 243 | 100 | 0 | 6 | 6 | 0.1 | 0 | 0.2 | 0.2 |
| Mexico | 487 804 | 553 719 | 65 915 | 14 | 23 871 | 20 787 | − 3084 | − 531 | 36.2 | 37.6 | 1.4 |
| Moldova | 1751 | 3212 | 1462 | 84 | 32 | 117 | 85 | 1 | 0.1 | 0.3 | 0.2 |
| Mongolia | 66 559 | 195 640 | 129 081 | 194 | 624 | 4989 | 4365 | 95 | 0.07 | 0.4 | 0.4 |
| Montenegro | 4513 | 2677 | − 1836 | − 40.7 | 673 | 118 | 51 | − 52 | 0.2 | 0.14 | − 0.08 |
| Morocco | 67 399 | 80 605 | 13 206 | 19 | 2808 | 1727 | − 1081 | − 80 | 11.3 | 8.2 | − 3.1 |
| Mozambique | 226 567 | 519 462 | 292 895 | 129 | 8398 | 36 001 | 27 603 | 513 | 5.2 | 21.7 | 16.6 |
| Myanmar | 358 887 | 303 529 | − 55 358 | − 15 | 23 625 | 12 474 | − 11 151 | − 723 | 23.6 | 16.6 | − 7.1 |
| Namibia | 288 945 | 124 317 | − 164 628 | − 57 | 6388 | 2099 | − 4289 | − 225 | 0.7 | 1.1 | 0.5 |
| Nepal | 54 704 | 34 158 | − 20 546 | − 38 | 2375 | 1132 | − 1243 | − 76 | 13.3 | 2.6 | − 10.8 |
| Netherlands | 7051 | 625 | − 6426 | − 91 | 92 | 19 | − 73 | − 4 | 2.8 | 0.6 | − 2.2 |
| New Caledonia, FRA | 6902 | 10 474 | 3572 | 52 | 1008 | 1528 | 520 | − 7 | 0.05 | 0.09 | 0.04 |
| New Zealand | 147 014 | 154 257 | 7243 | 5 | 6993 | 16 762 | 9769 | 105 | 1.0 | 1.7 | 0.7 |
| Nicaragua | 47 223 | 39 423 | − 7800 | − 17 | 2060 | 1084 | − 976 | − 63 | 1.7 | 1.6 | − 0.1 |
| Niger | 22 563 | 203 968 | 181 405 | 804 | 142 | 29 | − 113 | − 5 | 0.8 | 14.2 | 13.3 |
| Nigeria | 91 443 | 326 370 | 234 927 | 257 | 3067 | 4216 | 1149 | − 31 | 17.0 | 60.1 | 43.0 |
| Norway | 57 109 | 145 127 | 88 018 | 154 | 1213 | 10 635 | 9422 | 207 | 0.4 | 0.8 | 0.4 |
| Oman | 419 | 110 | − 309 | − 74 | 3 | 0.06 | − 3 | − 0.1 | 0.002 | 0.009 | 0.007 |
| Pakistan | 20 644 | 45 927 | 25 283 | 123 | 236 | 1034 | 798 | 15 | 5.8 | 12.3 | 6.5 |
| Panama | 8735 | 25 408 | 16 673 | 191 | 514 | 580 | 66 | − 8 | 0.2 | 1.8 | 1.6 |
| Papua New Guinea | 205 500 | 323 115 | 117 615 | 57 | 16 275 | 16 267 | − 8 | − 311 | 2.0 | 5.4 | 3.4 |
| Paraguay | 66 704 | 107 035 | 40 331 | 61 | 1659 | 3868 | 2209 | 22 | 4.1 | 1.5 | − 2.6 |
| Peru | 197 211 | 284 716 | 87 505 | 44 | 11 415 | 7451 | − 3964 | − 315 | 3.0 | 3.0 | 0.03 |
| Philippines | 132 275 | 50 178 | − 82 097 | − 62 | 4100 | 1532 | − 2568 | − 141 | 33.1 | 14.8 | − 18.2 |
| Poland | 41 514 | 1593 | − 39 921 | − 96 | 891 | 24 | − 867 | − 38 | 5.5 | 0.4 | − 5.1 |
| Portugal | 11 536 | 1294 | − 10 242 | − 89 | 233 | 75 | − 159 | − 8 | 0.4 | 0.2 | − 0.2 |
| Puerto Rico, USA | 436 | 3424 | 2988 | 684 | 19 | 197 | 178 | 4 | 0.1 | 1.0 | 0.9 |
| Reunion, FRA | 175 | 502 | 327 | 186 | 6 | 42 | 358 | 1 | 0.04 | 0.07 | 0.03 |
| Romania | 16 902 | 10 530 | − 6372 | − 38 | 364 | 326 | − 38 | − 8 | 1.0 | 0.5 | − 0.5 |
| Russia | 2 802 060 | 6 438 070 | 3 636 010 | 130 | 56 663 | 371 321 | 314 658 | 6593 | 8.6 | 25.3 | 16.7 |
| Rwanda | 11 404 | 15 601 | 4197 | 37 | 1053 | 793 | − 260 | − 26 | 3.3 | 8.8 | 5.5 |
| Sao Tome and Principe | 125 | 273 | 148 | 118 | 30 | 17 | − 13 | − 1 | 0.03 | 0.02 | − 0.01 |
| Saudi Arabia | 8327 | 16 653 | 8326 | 100 | 4 | 98 | 93 | 2 | 0.5 | 0.9 | 0.4 |
| Senegal | 34 655 | 64 738 | 30 083 | 87 | 409 | 310 | − 988 | − 10 | 2.1 | 6.4 | 4.3 |
| Serbia | 5438 | 4336 | − 1102 | − 20.3 | 105 | 116 | 11 | − 1743 | 0.46 | 0.54 | 0.07 |
| Sierra Leone | 35 902 | 11 296 | − 24 606 | − 69 | 1508 | 196 | − 1312 | − 61 | 2.1 | 0.8 | − 1.3 |
| Singapore | 243 | 93 | − 150 | − 62 | 6 | 2 | − 4 | − 0.2 | 2.0 | 0.7 | − 1.31 |
| Slovakia | 5066 | 971 | − 4095 | − 81 | 111 | 36 | − 75 | − 4 | 0.4 | 0.1 | − 0.2 |
| Slovenia | 2492 | 786 | − 1706 | − 69 | 38 | 21 | − 17 | − 1 | 0.4 | 0.08 | − 0.3 |
| Solomon Islands | 9065 | 17 949 | 8884 | 98 | 629 | 1047 | 419 | − 2 | 0.2 | 0.3 | 0.1 |
| Somalia | 52 520 | 175 394 | 122 874 | 234 | 1834 | 3082 | 1248 | − 5 | 1.5 | 3.1 | 1.6 |
| South Africa | 426 615 | 110 901 | − 315 714 | − 74 | 23 123 | 3650 | − 19 473 | − 916 | 20.5 | 5.3 | − 15.3 |
| Spain | 63 266 | 14 670 | − 48 596 | − 77 | 1713 | 733 | − 980 | − 57 | 2.4 | 2.7 | 0.3 |
| Sri Lanka | 21 057 | 17 570 | − 3487 | − 17 | 635 | 457 | − 178 | − 16 | 4.8 | 3.4 | − 1.4 |
| Sudan | 166 031 | 331 122 | 165 091 | 99 | 3628 | 1358 | − 2270 | − 125 | 3.3 | 13.3 | 10.0 |
| Suriname | 50 503 | 109 300 | 58 797 | 116 | 2102 | 2898 | 795 | − 21 | 0.04 | 0.3 | 0.3 |
| Svalbard, NOR | 0 | 4295 | 4295 | 100 | 0 | 33 | 33 | 1 | 0 | 0.00 | 0.00 |
| Swaziland | 16 533 | 1523 | − 15 010 | − 91 | 1227 | 111 | − 1116 | − 51 | 0.9 | 0.1 | − 0.9 |
| Sweden | 78 964 | 90 842 | 11 878 | 15 | 1594 | 7013 | 5419 | 102 | 0.8 | 0.2 | − 0.6 |
| Switzerland | 4982 | 4396 | − 586 | − 12 | 106 | 376 | 269 | 5 | 0.5 | 0.1 | − 0.2 |
| Syria | 11 327 | 15 380 | 4053 | 36 | 224 | 312 | 88 | − 2 | 1.2 | 2.3 | 1.0 |
| Taiwan, CN | 0 | 4191 | 4191 | 0 | 134 | 134 | 3 | 0 | 1.6 | 1.6 | |
| Tajikistan | 8412 | 23 411 | 14 999 | 178 | 104 | 610 | 506 | 10 | 0.2 | 2.2 | 2.0 |
| Tanzania | 386 256 | 370 036 | − 16 220 | − 4 | 22 604 | 22 929 | 325 | − 424 | 15.3 | 27.7 | 12.4 |
| Thailand | 309 245 | 123 041 | − 186 204 | − 60 | 15 991 | 3886 | − 12 104 | − 600 | 37.0 | 14.4 | − 22.6 |
| Togo | 11 064 | 8826 | − 2238 | − 20 | 299 | 72 | − 227 | − 11 | 0.7 | 1.3 | 0.7 |
| Trinidad and Tobago | 675 | 88 | − 587 | − 87 | 113 | 1 | − 112 | − 5 | 0.07 | 0.06 | − 0.01 |
| Tunisia | 12 476 | 18 112 | 5636 | 45 | 398 | 278 | − 120 | − 11 | 1.5 | 2.0 | 0.5 |
| Turkey | 30 851 | 15 771 | − 15 080 | − 49 | 453 | 539 | 86 | − 7 | 3.6 | 3.2 | − 0.4 |
| Turkmenistan | 1273 | 69 410 | 68 137 | 5351 | 8 | 603 | 595 | 14 | 0.02 | 0.7 | 0.7 |
| Turks and Caicos Islands, UK | 92 | 195 | 103 | 111 | 16 | 42 | 26 | 0.3 | 0.00 | 0.00 | 0.00 |
| Uganda | 41 506 | 84 870 | 43 364 | 105 | 1513 | 3261 | 1748 | 14 | 4.1 | 24.9 | 20.8 |
| Ukraine | 47 414 | 194 215 | 146 801 | 310 | 1048 | 9254 | 8206 | 180 | 2.5 | 9.3 | 6.9 |
| UK | 23 506 | 31 004 | 7498 | 32 | 262 | 952 | 690 | 12 | 3.3 | 2.5 | − 0.9 |
| USA | 1 983 886 | 2 596 936 | 613 050 | 31 | 39 673 | 120 259 | 80 586 | 1208 | 31.1 | 45.1 | 14.0 |
| Uruguay | 87 566 | 49 526 | − 38 040 | − 43 | 1875 | 2022 | 147 | − 32 | 1.1 | 0.4 | − 0.7 |
| Uzbekistan | 5974 | 143 847 | 137 873 | 2308 | 124 | 1925 | 1801 | 42 | 0.6 | 7.8 | 7.2 |
| Vanuatu | 2210 | 4883 | 2673 | 121 | 5 | 301 | 296 | 7 | 0.02 | 0.06 | 0.04 |
| Venezuela | 207 916 | 243 781 | 35 865 | 17 | 520 | 10 222 | 9702 | 227 | 2.2 | 2.9 | 0.7 |
| Vietnam | 134 026 | 84 207 | − 49 819 | − 37 | 343 | 4513 | 4170 | 95 | 28.1 | 12.7 | − 15.4 |
| Yemen | 14 422 | 38 009 | 23 587 | 164 | 8 | 196 | 189 | 4 | 0.5 | 4.9 | 4.4 |
| Zambia | 454 630 | 519 166 | 64 536 | 14 | 19 900 | 26 861 | 6960 | − 210 | 5.8 | 13.7 | 7.9 |
| Zimbabwe | 180 125 | 148 151 | − 31 974 | − 18 | 8862 | 6939 | − 1923 | − 216 | 5.4 | 6.9 | 1.4 |
| Total | 35 058 104 | 42 452 767 | 7 394 663 | 21 | 955 221 | 1 674 285 | 719 064 | − 695 | 1537.7 | 1207.5 | − 330.2 |
Table 4.
Land improvement comparison between 1981–2003 and 1981–2021*
| Country/ region |
Improving area 1981–2003 km2 |
Improving area 1981–2021 km2 |
Change 1981–2003 to 1981–2021 km2 |
Change 1981–2003 to 1981–2021 % |
NPP gain 1981–2003 ktC/23y |
NPP gain 1981–2021 ktC/41y |
Change 1981–2003 to 1981–2021 |
Change 1981–2003 to 1981–2021 ktC/y ktC |
Affected people 1981–2003 million |
Affected people 1981–2021 million |
Change 1981–2003 to 1981–2021 million |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Afghanistan | 214 584 | 115 033 | − 99 551 | − 46 | 52.6 | 2860.7 | 2809.1 | 67.5 | 13.3 | 10.3 | − 3.0 |
| Albania | 2815 | 12 125 | 9310 | 330 | 1.7 | 2055.2 | 2053.5 | 50.1 | 0.6 | 0.9 | 0.3 |
| Algeria | 60 359 | 72 409 | 12 050 | 20 | 14.9 | 2974.7 | 2959.8 | 71.9 | 3.9 | 6.8 | 2.9 |
| Andorra | 0 | 364 | 364 | 100 | 0 | 44.4 | 44.4 | 1.1 | 0 | 0.05 | 0.05 |
| Angola | 40 653 | 88 384 | 47 731 | 117 | 19.3 | 2717.3 | 2698.0 | 65.4 | 1.2 | 0.8 | − 0.4 |
| Antigua and Barbuda | 0 | 220 | 220 | 100 | 0 | 29.6 | 29.6 | 0.7 | 0 | 0.05 | 0.05 |
| Argentina | 499 109 | 558 455 | 59 346 | 12 | 237.1 | 20 687.3 | 20 450.3 | 494.3 | 2.6 | 5.3 | 2.7 |
| Armenia | 1906 | 13 252 | 11 346 | 595 | 1.3 | 1290.5 | 1289.2 | 31.4 | 0.2 | 0.8 | 0.6 |
| Australia | 1 627 934 | 3 667 202 | 2 039 268 | 125 | 911.0 | 153 121.7 | 152 210.7 | 3695.0 | 3.0 | 5.6 | 2.6 |
| Austria | 1807 | 23 959 | 22 152 | 1226 | 134.6 | 4625.8 | 4624.4 | 112.8 | 0.2 | 2.1 | 2.0 |
| Azerbaijan | 848 | 40 306 | 39 458 | 4656 | 0.4 | 2725.6 | 2725.2 | 66.5 | 0.2 | 3.4 | 3.3 |
| Bahamas | 0 | 1975 | 1975 | 100 | 0 | 107.5 | 107.5 | 2.6 | 0 | 0.007 | 0.007 |
| Bahrain | 311 | 0 | − 311 | − 100 | 0 | 0 | 0 | 0 | 0.03 | 0 | − 0.03 |
| Bangladesh | 6487 | 110 667 | 104 180 | 1606 | 2.7 | 6197.7 | 6195.0 | 151.0 | 5.3 | 122.8 | 117.6 |
| Belarus | 122 831 | 78 854 | − 43 977 | − 36 | 93.5 | 7762.3 | 7668.8 | 185.3 | 4.7 | 2.3 | − 2.3 |
| Belgium | 0 | 24 170 | 24 170 | 100 | 0 | 2302.8 | 2302.8 | 56.2 | 0 | 7.4 | 7.4 |
| Belize | 2316 | 11 003 | 8687 | 375 | 1.0 | 590.3 | 589.3 | 14.4 | 0.02 | 0.2 | 0.2 |
| Benin | 50 213 | 19 947 | − 30 266 | − 60 | 45.9 | 889.2 | 843.4 | 19.7 | 2.8 | 1.5 | − 1.2 |
| Bhutan | 355 | 9909 | 9554 | 2692 | 0.9 | 372.0 | 371.1 | 9.0 | 0.03 | 0.1 | 0.1 |
| Bolivia | 244 382 | 424 512 | 180 130 | 74 | 78.9 | 12 703.4 | 12 624.6 | 306.4 | 2.4 | 4.9 | 2.5 |
| Bosnia and Herzegovina | 47 | 18 531 | 18 484 | 39 127 | 0 | 1505.8 | 1505.8 | 36.7 | 0.006 | 0.9 | 0.9 |
| Botswana | 376 664 | 180 506 | − 196 158 | − 52 | 176.4 | 15 470.3 | 15 293.9 | 369.7 | 0.7 | 1.2 | 0.5 |
| Brazil | 1 659 571 | 2 451 035 | 791 464 | 48 | 148.0 | 160 665.2 | 159 185.2 | 3854.3 | 21.3 | 53.9 | 32.6 |
| Brunei | 0 | 1598 | 1598 | 100 | 0 | 51.1 | 51.1 | 1.2 | 0 | 0.06 | 0.06 |
| Bulgaria | 37 092 | 10 261 | − 26 831 | − 72 | 20.4 | 1815.8 | 1795.4 | 43.4 | 2.3 | 0.6 | − 1.7 |
| Burkina Faso | 97 636 | 6473 | − 91 163 | − 93 | 73.0 | 88.2 | 15.2 | − 1.0 | 3.9 | 0.3 | − 3.6 |
| Burundi | 2007 | 5869 | 3862 | 192 | 1.1 | 237.3 | 236.1 | 5.7 | 0.6 | 2.1 | 1.5 |
| Cambodia | 4269 | 40 212 | 35 943 | 842 | 2.1 | 2192.3 | 2190.2 | 53.4 | 0.2 | 4.4 | 4.2 |
| Cameroon | 72 839 | 227 221 | 154 382 | 212 | 72.4 | 13 601.4 | 13 529.0 | 328.6 | 2.3 | 9.3 | 7.0 |
| Canada | 671 781 | 1 950 420 | 1 278 639 | 190 | 300.2 | 127 273.4 | 126 973.2 | 3091.2 | 1.4 | 4.5 | 3.1 |
| Cape Verde | 0 | 896 | 896 | 100 | 0 | 2.5 | 2.5 | 0.06 | 0 | 0.1 | 0.1 |
| Central African Republic | 73 564 | 234 838 | 161 274 | 219 | 39.8 | 8017.3 | 7977.5 | 193.8 | 0.4 | 1.7 | 1.3 |
| Chad | 72 762 | 21 335 | − 51 427 | − 71 | 37.3 | 77.2 | 39.9 | 0.3 | 1.0 | 0.7 | − 0.3 |
| Chile | 177 982 | 100 782 | − 77 200 | − 43 | 246.0 | 5513.0 | 5266.9 | − 123.8 | 1.4 | 1.2 | − 0.2 |
| China | 807 802 | 3 449 516 | 2 641 714 | 327 | 316.7 | 324 410.6 | 324 093.8 | 7898.7 | 94.9 | 759.1 | 664.2 |
| Colombia | 241 729 | 491 232 | 249 503 | 103 | 262.8 | 24 141.4 | 23 878.6 | 577.4 | 4.4 | 24.3 | 19.9 |
| Comoros | 98 | 0 | − 98 | − 100 | 0.1 | 0 | − 0.1 | − 0.004 | − .03 | 0 | − 0.03 |
| Congo DR | 195 400 | 368 562 | 173 162 | 89 | 148.9 | 9971.7 | 9822.8 | 236.7 | 5.3 | 12.5 | 7.2 |
| Congo R | 41 940 | 90 018 | 48 078 | 115 | 32.1 | 3235.9 | 3203.7 | 77.5 | 0.3 | 0.9 | 0.6 |
| Costa Rica | 5526 | 16 172 | 10 646 | 193 | 724.1 | 353.4 | 346.1 | 8.3 | 0.3 | 0.8 | 0.5 |
| Croatia | 1098 | 14 735 | 13 637 | 1242 | 0.8 | 1864.2 | 1863.4 | 45.4 | 0.1 | 0.6 | 0.5 |
| Cuba | 1417 | 53 180 | 51 763 | 3653 | 0.4 | 4341.7 | 4341.3 | 105.9 | 0.08 | 4.4 | 4.4 |
| Cyprus | 345 | 4205 | 3860 | 1120 | 0.09 | 527.2 | 527.2 | 12.9 | 0.02 | 0.2 | 0.2 |
| Czech Republic | 6175 | 50 385 | 44 210 | 716 | 4.4 | 10 194.0 | 10 189.1 | 248.4 | 0.8 | 6.0 | 5.1 |
| Denmark | 356 | 5516 | 5160 | 1451 | 0.2 | 932.4 | 932.1 | 22.7 | 0.02 | 1.1 | 1.1 |
| Djibouti | 6581 | 438 | − 6143 | − 93 | 1.5 | 0.4 | − 1.1 | − 0.06 | 0.05 | 0.007 | − 0.04 |
| Dominica | 68 | 94 | 26 | 38 | 0.1 | 8.6 | 8.5 | 0.2 | 0.004 | 0.01 | 0.01 |
| Dominican Republic | 1529 | 22 143 | 20 614 | 1348 | 0.7 | 1310.8 | 1310.0 | 31.9 | 0.2 | 3.4 | 3.1 |
| Ecuador | 28 133 | 46 559 | 18 426 | 66 | 58.8 | 3517.5 | 3458.7 | 83.2 | 2.1 | 3.2 | 1.1 |
| Egypt | 3158 | 16 846 | 13 688 | 433 | 1.5 | 1728.2 | 1726.8 | 42.1 | 1.4 | 15.9 | 14.5 |
| El Salvador | 1870 | 12 658 | 10 788 | 577 | 1.0 | 640.2 | 639.2 | 15.6 | 0.3 | 3.9 | 3.7 |
| Equatorial Guinea | 3377 | 6309 | 2932 | 87 | 3.5 | 276.3 | 272.8 | 6.6 | 0.06 | 0.2 | 0.09 |
| Eritrea | 9792 | 3151 | − 6641 | − 68 | 7.7 | 176.7 | 169.0 | 4.0 | 0.9 | 0.5 | − 0.4 |
| Estonia | 5239 | 21 241 | 16 002 | 305 | 2.7 | 3238.7 | 3236.0 | 78.9 | 0.09 | 0.2 | 0.1 |
| Ethiopia | 306 748 | 136 830 | − 169 918 | − 55 | 166.3 | 7800.6 | 7634.3 | 183.0 | 7.1 | 7.7 | 0.6 |
| Faroe Islands, DK | 0 | 182 | 182 | 100 | 0 | 4.0 | 4.0 | 0.1 | 0 | 0.002 | 0.002 |
| Finland | 433 | 191 927 | 191 494 | 44 250 | 0.09 | 35 402.6 | 35 402.5 | 863.5 | 0.02 | 2.3 | 2.3 |
| France | 7296 | 350 208 | 342 912 | 4700 | 4.3 | 42 839.9 | 42 835.5 | 1044.7 | 0.5 | 33.7 | 33.2 |
| French Guiana | 4140 | 15 323 | 11 183 | 270 | 4.2 | 399.8 | 395.6 | 9.6 | 0.01 | 0.05 | 0.04 |
| Gabon | 32 999 | 83 921 | 50 922 | 154 | 27.4 | 4534.7 | 4507.3 | 109.4 | 0.5 | 0.4 | − 0.2 |
| Gambia | 4454 | 90 | − 4364 | − 98 | 1.7 | 1.7 | 0.005 | − 0.03 | 0.6 | 0.05 | − 0.5 |
| Georgia | 5076 | 43 817 | 38 741 | 763 | 4.3 | 6843.6 | 6839.3 | 166.7 | 0.7 | 1.5 | 0.8 |
| Germany | 4182 | 271 768 | 267 586 | 6398 | 2.3 | 35 535.8 | 35 533.5 | 866.6 | 0.6 | 53.1 | 52.5 |
| Ghana | 101 775 | 17 778 | − 83 997 | − 83 | 79.0 | 556.3 | 477.3 | 10.1 | 6.8 | 0.8 | − 5.9 |
| Greece | 8188 | 33 020 | 24 832 | 303 | 3.2 | 5647.9 | 5644.8 | 137.6 | 0.7 | 1.8 | 1.1 |
| Greenland DK | 0 | 19 113 | 19 113 | 100 | 0 | 248.5 | 248.5 | 6.1 | 0 | 0.0003 | 0.0003 |
| Grenada | 0 | 170 | 170 | 100 | 0 | 19.4 | 19.4 | 0.4 | 0 | 0.05 | 0.05 |
| Guadeloupe FRA | 0 | 501 | 501 | 100 | 0 | 45.7 | 45.7 | 1.1 | 0 | 0.09 | 0.09 |
| Guatemala | 2098 | 48 699 | 46 601 | 2222 | 1.0 | 3415.3 | 3414.3 | 83.3 | 0.07 | 8.9 | 8.9 |
| Guinea | 25 842 | 28 088 | 2246 | 9 | 11.9 | 1799.4 | 1787.5 | 43.4 | 0.7 | 1.6 | 0.8 |
| Guinea−Bissau | 4181 | 290 | − 3891 | − 93 | 1.3 | 11.5 | 10.2 | 0.2 | 0.1 | 0.02 | − 0.09 |
| Guyana | 24 388 | 29 140 | 4752 | 20 | 41.0 | 785 4 | 744.6 | 17.4 | 0.04 | 0.04 | 0.003 |
| Haiti | 898 | 9167 | 8269 | 921 | 0.3 | 490.0 | 489.7 | 11.9 | 0.2 | 2.9 | 2.7 |
| Honduras | 9022 | 43 029 | 34 007 | 377 | 3.2 | 3190.3 | 3187.2 | 77.7 | 0.4 | 3.3 | 2.9 |
| Hong Kong CN | 0 | 477 | 477 | 100 | 0 | 75.6 | 75.6 | 1.8 | 0 | 3.0 | 3.0 |
| Hungary | 5519 | 13 651 | 8132 | 147 | 2.9 | 2052.3 | 2049.4 | 49.9 | 0.7 | 1.4 | 0.7 |
| Iceland | 1596 | 14 523 | 12 927 | 810 | 0.3 | 655.6 | 655.3 | 16.0 | 0.001 | 0.02 | 0.02 |
| India | 1 092 674 | 1 754 623 | 661 949 | 61 | 594.8 | 99 132.0 | 98 537.3 | 2392.0 | 279.4 | 815.1 | 535.7 |
| Indonesia | 182 690 | 288 948 | 106 258 | 58 | 95.3 | 13 240.5 | 13 145.2 | 318.8 | 18.0 | 51.6 | 33.6 |
| Iran | 186 294 | 366 828 | 180 534 | 97 | 44.5 | 14 297.3 | 14 252.7 | 346.8 | 9.3 | 29.9 | 20.5 |
| Iraq | 50 623 | 74 681 | 24 058 | 48 | 20.0 | 1904.9 | 1884.9 | 45.6 | 7.7 | 14.0 | 6.3 |
| Ireland | 40 | 33 416 | 33 376 | 83 018 | 0.02 | 3081.7 | 3081.7 | 75.2 | 0.002 | 1.9 | 1.9 |
| Israel | 61 | 1982 | 1921 | 3168 | 0.06 | 187.1 | 187.1 | 4.6 | 0.003 | 1.2 | 1.2 |
| Italy | 29 068 | 183 129 | 154 061 | 530 | 20.5 | 23 340.9 | 23 320.4 | 568.4 | 3.7 | 25.3 | 21.6 |
| Ivory Coast | 0 | 54 656 | 54 656 | 100 | 0 | 3498.9 | 3498.9 | 85.3 | 0 | 3.4 | 3.4 |
| Jamaica | 131 | 656 | 525 | 401 | 0.1 | 41.7 | 41.6 | 1.0 | 0.03 | 0.09 | 0.06 |
| Jammu and Kashmir | 4050 | 0 | − 4050 | − 100 | 6.3 | 0 | − 6.3 | − 0.3 | 1.8 | 0 | − 1.8 |
| Japan | 1793 | 41 706 | 39 913 | 2226 | 1.1 | 5032.4 | 5031.26 | 122.7 | 0.2 | 8.9 | 8.7 |
| Jordan | 786 | 2331 | 1545 | 197 | 0.2 | 76.3 | 76.1 | 1.9 | 0.2 | 0.9 | 0.8 |
| Kazakhstan | 667 838 | 122 081 | − 545 757 | − 82 | 147.1 | 6527.4 | 6380.3 | 152.8 | 3.9 | 0.6 | − 3.3 |
| Kenya | 317 890 | 60 455 | − 257 435 | − 81 | 313.8 | 2709.0 | 2395.3 | 52.4 | 5.1 | 4.1 | − 1.1 |
| Korea DPR | 306 | 57 789 | 57 483 | 18 770 | 0.08 | 2652.2 | 2652.1 | 64.7 | 0.07 | 7.8 | 7.8 |
| Korea | 0 | 70 814 | 70 814 | 100 | 0 | 5235.9 | 5235.9 | 127.7 | 0 | 21.9 | 21.9 |
| Kyrgyzstan | 37 397 | 42 992 | 5595 | 15 | 17.4 | 2078.5 | 2061.1 | 49.9 | 0.5 | 0.8 | 0.2 |
| Laos | 4573 | 94 854 | 90 281 | 1974 | 4.1 | 3929.0 | 3924.9 | 95.7 | 0.08 | 2.8 | 2.8 |
| Latvia | 31 343 | 29 048 | − 2295 | − 7 | 19.2 | 3854.8 | 3835.6 | 93.3 | 0.6 | 0.5 | − 0.07 |
| Lebanon | 2433 | 2152 | − 281 | − 12 | 1.4 | 170.5 | 169.1 | 4.1 | 0.3 | 0.3 | 0.06 |
| Lesotho | 6423 | 5761 | − 662 | − 10 | 1.8 | 307.9 | 306.1 | 7.4 | 0.6 | 0.8 | 0.2 |
| Liberia | 6724 | 3061 | − 3663 | − 55 | 7.5 | 310.2 | 302.72 | 7.2 | 0.4 | 0.1 | − 0.3 |
| Libya | 8454 | 4642 | − 3812 | − 45 | 1.7 | 162.2 | 160.5 | 3.9 | 0.9 | 0.3 | − 0.6 |
| Liechtenstein | 0 | 160 | 160 | 100 | 0 | 8.6 | 8.6 | 0.2 | 0 | 0.04 | 0.04 |
| Lithuania | 21 661 | 15 831 | − 5830 | − 27 | 14.6 | 2112.5 | 2097.9 | 50.9 | 0.8 | 0.7 | − 0.04 |
| Luxembourg | 0 | 2519 | 2519 | 100 | 0 | 194.4 | 194.4 | 4.7 | 0 | 0.6 | 0.6 |
| Macao, CN | 0 | 33 | 33 | 100 | 0 | 0.4 | 4.1 | 0.01 | 0 | 0.5 | 0.5 |
| Macedonia | 2242 | 4677 | 2435 | 109 | 1.1 | 691.4 | 690.3 | 16.8 | 0.2 | 0.5 | 0.2 |
| Madagascar | 63 548 | 81 963 | 18 415 | 29 | 26.8 | 5036.1 | 5009.3 | 121.7 | 1.2 | 3.3 | 2.1 |
| Malawi | 13 698 | 7865 | − 5833 | − 43 | 4.2 | 361.4 | 357.2 | 8.6 | 1.7 | 0.8 | − 0.9 |
| Malaysia | 15 933 | 80 026 | 64 093 | 402 | 13.7 | 2108.7 | 2095.0 | 50.8 | 0.6 | 3.3 | 2.7 |
| Mali | 205 629 | 4203 | − 201 426 | − 98 | 89.9 | 69.8 | − 20.1 | − 2.2 | 5.4 | 0.1 | − 5.2 |
| Martinique, FRA | 0 | 103 | 103 | 100 | 0 | 8.6 | 8.6 | 0.2 | 0 | 0.04 | 0.04 |
| Mauritania | 2300 | 239 | − 2061 | − 90 | 0.4 | 6.5 | 6.1 | 0.1 | 0.04 | 0.004 | − .04 |
| Mauritius | 321 | 243 | − 78 | − 24 | 0.2 | 57.5 | 57.3 | 1.4 | 0.2 | 0.06 | − 0.1 |
| Mexico | 225 347 | 470 049 | 244 702 | 109 | 78.7 | 23 881.6 | 23 802.9 | 579.1 | 5.8 | 16.0 | 10.1 |
| Moldova | 20 350 | 8148 | − 12 202 | − 60 | 11.2 | 825.2 | 814.0 | 19.6 | 2.1 | 0.8 | − 1.3 |
| Mongolia | 213 697 | 284 653 | 70 956 | 33 | 78.2 | 14 403.4 | 14 325.2 | 347.9 | 0.2 | 1.2 | 1.0 |
| Montenegro | 0 | 5746 | 5746 | 100 | 0 | 342 | 342 | 8.3 | 0 | 0.19 | 0.19 |
| Morocco | 94 552 | 65 532 | − 29 020 | − 31 | 34.6 | 3161.8 | 3127.1 | 75.6 | 6.8 | 5.1 | − 1.7 |
| Mozambique | 153 790 | 41 769 | − 112 021 | − 73 | 54.9 | 2831.0 | 2776.0 | 66.7 | 4.1 | 1.0 | − 3.1 |
| Myanmar | 24 292 | 162 436 | 138 144 | 569 | 19.8 | 7792.3 | 7772.5 | 189.2 | 1.1 | 11.8 | 10.7 |
| Namibia | 130 240 | 42 419 | − 87 821 | − 67 | 50.6 | 3205.9 | 3155.2 | 76.0 | 0.2 | 0.04 | − 0.1 |
| Nepal | 4605 | 78 921 | 74 316 | 1613 | 3.2 | 4005.4 | 4002.2 | 97.6 | 0.8 | 21.2 | 20.4 |
| Netherlands | 0 | 21 047 | 21 047 | 100 | 0 | 2205.2 | 2205.2 | 53.8 | 0 | 6.8 | 6.8 |
| New Caledonia FRA | 810 | 2232 | 1422 | 176 | 0.9 | 214.1 | 213.2 | 5.2 | 0.005 | 0.02 | 0.01 |
| New Zealand | 7735 | 59 223 | 51 488 | 666 | 4.3 | 4360.8 | 4356.5 | 106.2 | 0.03 | 0.3 | 0.2 |
| Nicaragua | 14 305 | 38 794 | 24 489 | 171 | 6.5 | 1926.4 | 1919.8 | 46.7 | 0.5 | 2.1 | 1.6 |
| Niger | 101 911 | 612 | − 101 299 | − 99 | 23.4 | 0.2 | − 23.2 | − 1.0 | 1.8 | 0.03 | − 1.8 |
| Nigeria | 160 792 | 223 356 | 62 564 | 39 | 150.5 | 8344. 5 | 8194.0 | 197.0 | 22.0 | 48.6 | 26.6 |
| Norway | 16 739 | 77 977 | 61 238 | 366 | 7.0 | 6606.0 | 6598.9 | 160.8 | 0.07 | 0.9 | 0.9 |
| Oman | 9922 | 2206 | − 7716 | − 77 | 1.4 | 78.3 | 76.9 | 1.8 | 0.4 | 0.5 | 0.1 |
| Pakistan | 291 709 | 275 078 | − 16 631 | − 6 | 90.2 | 5542.3 | 5452.0 | 131.3 | 68.5 | 104.8 | 36.3 |
| Panama | 20 843 | 29 808 | 8965 | 43 | 15.5 | 751.5 | 736.0 | 17.6 | 0.7 | 1.1 | 0.4 |
| Papua New Guinea | 64 377 | 36 431 | − 27 946 | − 43 | 28.2 | 1578.4 | 1550.1 | 37.3 | 0.8 | 0.6 | − 0.3 |
| Paraguay | 91 068 | 55 810 | − 35 258 | − 39 | 40.8 | 1191.3 | 1150.5 | 27.3 | 0.4 | 0.5 | 0.08 |
| Peru | 272 800 | 436 963 | 164 163 | 60 | 405.4 | 18 998.5 | 18 593.1 | 445.8 | 3.7 | 7.6 | 3.9 |
| Philippines | 7410 | 89 520 | 82 110 | 1108 | 3.3 | 4493.0 | 4489.7 | 109.4 | 1.4 | 19.9 | 18.5 |
| Poland | 13 110 | 122 482 | 109 372 | 834 | 8.6 | 20 079.0 | 20 070.4 | 489.4 | 1.0 | 12.8 | 11.8 |
| Portugal | 265 | 82 587 | 82 322 | 31 009 | 0.2 | 11 354.6 | 11 354.4 | 276.9 | 0.1 | 6.6 | 6.5 |
| Puerto Rico, USA | 548 | 585 | 37 | 7 | 0.2 | 50.4 | 50.1 | 1.2 | 0.09 | 0.3 | 0.2 |
| Qatar | 243 | 0 | − 243 | − 100 | 0.004 | 0 | − 0.004 | − 0.15 | 0.004 | 0 | − 0.004 |
| Reunion, FRA | 152 | 419 | 267 | 175 | 0.2 | 36.5 | 36.3 | 0.9 | 0.04 | − .07 | 0.03 |
| Romania | 81 042 | 58 367 | − 22 675 | − 28 | 50.0 | 8444.1 | 8394.0 | 203.8 | 8.8 | 7.4 | − 1.4 |
| Russia | 1 671 259 | 4 979 045 | 3 307 786 | 198 | 819.4 | 467 474.7 | 466 655.2 | 11 366.2 | 23.8 | 43.1 | 19.2 |
| Rwanda | 2011 | 1652 | − 359 | − 18 | 1.1 | 188.1 | 187.0 | 4.5 | 0.6 | 0.3 | − 0.2 |
| San Marino | 0 | 60 | 60 | 100 | 0 | 5.1 | 5.1 | 0.1 | 0 | 0.02 | 0.02 |
| Sao Tome and Principe | 77 | 0 | − 77 | − 100 | 0.003 | 0 | − 0.003 | 0 | 0.01 | 0 | − 0.01 |
| Saudi Arabia | 17 833 | 12 450 | − 5383 | − 30 | 4.6 | 252.3 | 247.6 | 6.0 | 0.7 | 0.5 | − 0.2 |
| Senegal | 72 830 | 1153 | − 71 677 | − 98 | 15.0 | 19.5 | 4.5 | − 0.2 | 1.8 | 0.03 | − 1.8 |
| Serbia | 21 445 | 7879 | − 13 566 | − 63.3 | 11.6 | 311.2 | 299.6 | 7.1 | 2.1 | 0.49 | − 1.65 |
| Sierra Leone | 7370 | 9357 | 1987 | 27 | 3.1 | 622.2 | 619.1 | 15.0 | 0.4 | 0.9 | 0.4 |
| Slovakia | 1381 | 12 397 | 11 016 | 798 | 1.0 | 2924.0 | 2923.0 | 71.3 | 0.1 | 1.4 | 1.3 |
| Slovenia | 0 | 1511 | 1511 | 100 | 0 | 201.4 | 201.4 | 4.9 | 0 | 0.09 | 0.09 |
| Solomon Islands | 3600 | 596 | − 3004 | − 83 | 4.0 | 4.6 | 0.1 | − .05 | 0.03 | 0.01 | − 0.02 |
| Somalia | 229 512 | 63 834 | − 165 678 | − 72 | 138.0 | 1680.1 | 1542.5 | 35.0 | 3.6 | 1.6 | − 2.0 |
| South Africa | 332 475 | 469 191 | 136 716 | 41 | 114.1 | 33 315.4 | 33 201.3 | 807.6 | 3.6 | 21.1 | 17.6 |
| South Sudan | 116 195 | 0 | − 116 195 | − 100 | 134.6 | 0 | − 134.6 | − 5.9 | 1.4 | 0 | − 1.4 |
| Spain | 88 846 | 389 260 | 300 414 | 338 | 66.4 | 43 661.5 | 43 595.1 | 1062.0 | 3.9 | 24.2 | 20.3 |
| Sri Lanka | 1833 | 11 968 | 10 135 | 553 | 1.1 | 641.1 | 640.0 | 15.6 | 0.3 | 1.9 | 1.6 |
| Sudan | 129 811 | 375 172 | 245 361 | 189 | 73.7 | 18 904.6 | 18 830.8 | 457.9 | 2.1 | 8.9 | 6.8 |
| Suriname | 15 241 | 13 396 | − 1845 | − 12 | 166 | 282.6 | 266.0 | 6.2 | 0.007 | 0.04 | 0.04 |
| Svalbard, NOR | 0 | 5391 | 5391 | 100 | 0 | 69.3 | 69.3 | 1.7 | 0 | 0.0001 | 0.0001 |
| Swaziland | 0 | 11 956 | 11 956 | 100 | 0 | 1389.8 | 1389.8 | 33.9 | 0 | 1.0 | 1.0 |
| Sweden | 1705 | 267 055 | 265 350 | 15 560 | 0.8 | 39 678.7 | 39 677.8 | 967.7 | 0.008 | 3.5 | 3.5 |
| Switzerland | 1085 | 31 131 | 30 046 | 2768 | 1.4 | 4515.0 | 4513.6 | 110.1 | 0.03 | 6.9 | 6.8 |
| Syria | 52 713 | 20 091 | − 32 622 | − 62 | 23.8 | 1222.2 | 1198.4 | 28.8 | 7.0 | 3.8 | − 3.2 |
| Taiwan, CN | 0 | 15 657 | 15 657 | 100 | 0 | 1741.8 | 1741.8 | 42.5 | 0 | 6.4 | 6.4 |
| Tajikistan | 40 349 | 26 484 | − 13 865 | − 34 | 12.3 | 1116.0 | 1103.7 | 26.7 | 2.6 | 3.1 | 0.4 |
| Tanzania | 118 767 | 309 865 | 191 098 | 161 | 59.9 | 22 027.3 | 21 967.4 | 534.6 | 4.1 | 10.2 | 6.1 |
| Thailand | 17 474 | 240 437 | 222 963 | 1276 | 8.1 | 15 665.8 | 15 657.7 | 381.7 | 2.29 | 24.3 | 22.1 |
| East Timor | 135 | 0 | − 135 | − 100 | 0.03 | 0 | − 0.03 | − 0.002 | 0.01 | 0 | − 0.01 |
| Togo | 20 529 | 4829 | − 15 700 | − 77 | 15.1 | 236.6 | 221.5 | 5.1 | 1.9 | 0.5 | − 1.3 |
| Trinidad and Tobago | 147 | 1061 | 914 | 624 | 0.1 | 50.5 | 50.7 | 1.2 | 0.02 | 0.37 | 0.3 |
| Tunisia | 14 377 | 20 882 | 6505 | 45 | 8.7 | 1091.2 | 1082.5 | 26.2 | 1.8 | 3.1 | 1.3 |
| Turkey | 217 418 | 464 426 | 247 008 | 114 | 142.4 | 54 428.8 | 54 286.3 | 1321.3 | 21.8 | 34.8 | 13.0 |
| Turkmenistan | 104 829 | 48 733 | − 56 096 | − 54 | 21.7 | 1110.9 | 1089.3 | 26.2 | 1.3 | 0.6 | − 0.7 |
| Turks and Caicos Islands, UK | 0 | 39 | 39 | 100 | 0 | 11.8 | 11.8 | 0.3 | 0 | 0.00006 | 0.00006 |
| UK | 79 | 57 579 | 57 500 | 72 699 | 0.8 | 4288.0 | 4287.9 | 104.6 | 0.005 | 0.8 | 0.8 |
| Uganda | 21 010 | 31 562 | 10 552 | 50 | 10.7 | 2239.7 | 2229.0 | 54.2 | 2.1 | 3.6 | 1.4 |
| Ukraine | 178 281 | 239 720 | 61 439 | 35 | 96.0 | 16 492.9 | 16 396.9 | 398.1 | 12.6 | 13.3 | 0.8 |
| United Arab Emirates | 605 | 0 | − 605 | − 100 | 0.01 | 0 | − 0.01 | 0 | 0.03 | 0 | − 0.03 |
| USA | 1 641 111 | 2 717 657 | 1 076 546 | 66 | 563.9 | 128 583.3 | 128 019.4 | 3111.7 | 23.9 | 43.8 | 19.8 |
| Uruguay | 2588 | 50 030 | 47 442 | 1833 | 1.2 | 2698.0 | 2696.7 | 65.8 | 0.1 | 0.3 | 0.1 |
| Uzbekistan | 134 121 | 37 122 | − 96 999 | − 72 | 44.6 | 938.2 | 893.6 | 20.9 | 10.4 | 4.5 | − 5.9 |
| Vanuatu | 256 | 111 | − 145 | − 57 | 0.2 | 2.1 | 1.9 | 0.04 | 0.002 | 0.003 | 0.0005 |
| Venezuela | 226 087 | 346 519 | 120 432 | 533 | 20.3 | 15 648.5 | 15 445.1 | 372.8 | 4.0 | 12.7 | 8.7 |
| Vietnam | 8967 | 198 822 | 189 855 | 2117 | 7.9 | 12 832.3 | 12 824.5 | 312.6 | 2.9 | 61.3 | 58.4 |
| West Bank | 50 | 0 | − 50 | − 100 | 0.02 | 0 | − 0.02 | − 1.0 | 0.005 | 0 | − 0.005 |
| Yemen | 4247 | 1638 | − 2609 | − 61 | 98.8 | 47.1 | − 51.7 | − 3.1 | 0.6 | 0.3 | − 0.4 |
| Zambia | 79 386 | 38 444 | − 40 942 | − 52 | 27.0 | 1362.8 | 1335.8 | 32.1 | 1.42 | 1.0 | − 0.47 |
| Zimbabwe | 66 955 | 48 567 | − 18 388 | − 28 | 27.1 | 4549.7 | 4522.7 | 109.8 | 1.5 | 2.1 | 0.6 |
| Total | 18 725 478 | 38 948 417 | 20 222 939 | 108 | 16 648.0 | 2 368 151.5 | 2 351 503.8 | 57 036.0 | 831.0 | 2851.0 | 2019.9 |
* Countries or regions with no improvement are not listed
Breaking down the degrading land by cover type (ESA Copernicus 2023) reveals that 33% of all degraded land is scrub (shrub and herbaceous land in the ESA Copernicus listing), 24% is broadleaved forest, 21% is needle-leaved forest, 13% is grassland, and 9% is cropland (Table 5). As a proportion of each land cover type, degradation affects 30% of global scrublands, 32% of broadleaved forest, 38% of needle-leaved forest, 30% of grassland, and 24% of cropland. Needle-leaved forest stands out with the highest proportion of land affected because of the incidence of megafires in boreal forests: it might be overly optimistic to take the lower proportion of cropland affected as a policy success since severely degraded cropland often ceases to be classified as such because it is not cropland anymore.
Table 5.
Global degrading and improving areas by land cover 1981–2021
| Code | Land cover ESA Copernicus LC 2020 |
Total pixels, TP 5′ × 5′ |
Degrading pixels, DP 5′ × 5′ |
DP/TP % | DP/TDP* % | Improving pixels, IP 5′ × 5′ |
IP/TP % | IP/TIP** % |
|---|---|---|---|---|---|---|---|---|
| 10 | Cropland, rainfed | 116 901 | 30 198 | 25.8 | 5.4 | 37 412 | 32.0 | 7.18 |
| 11 | Herbaceous | 113 294 | 29 489 | 26.0 | 5.3 | 37 848 | 33.4 | 7.26 |
| 12 | Tree or shrub | 2769 | 344 | 12.4 | 0.06 | 1307 | 47.2 | 0.25 |
| 20 | Cropland, irrigated or post-flooding | 32 985 | 4382 | 13.3 | 0.8 | 17 791 | 53.9 | 3.41 |
| 30 | Mosaic cropland (> 50%) / natural vegetation (tree) | 53 149 | 13 741 | 25.9 | 2.5 | 17 455 | 32.8 | 3.35 |
| 40 | Mosaic natural vegetation (tree) | 49 532 | 13 646 | 27.5 | 2.5 | 15 857 | 32.0 | 3.04 |
| 50 | Tree cover, broadleaved, evergreen, closed to open (> 15%) | 152 214 | 61 022 | 40.1 | 11.0 | 36 308 | 23.9 | 6.97 |
| 60 | Tree cover, broadleaved, deciduous, closed to open (> 15%) | 94 178 | 24 338 | 25.8 | 4.4 | 35 811 | 38.0 | 6.87 |
| 61 | Tree cover, broadleaved, deciduous, closed (> 40%) | 12 303 | 3413 | 27.7 | 0.6 | 4202 | 34.2 | 0.81 |
| 62 | Tree cover, broadleaved, deciduous, open (15–40%) | 43 624 | 14 336 | 32.9 | 2.6 | 11 995 | 27.5 | 2.30 |
| 70 | Tree cover, needle-leaved, evergreen, closed to open (> 15%) | 125 879 | 32 688 | 26.0 | 5.9 | 54 741 | 43.5 | 10.50 |
| 71 | Tree cover, needle-leaved, evergreen, closed (> 40%) | 50 591 | 30 318 | 59.9 | 5.5 | 10 216 | 20.2 | 1.96 |
| 72 | Tree cover, needle-leaved, evergreen, open (15–40%) | 21 | 9 | 42.9 | 0.002 | 8 | 38.1 | 0.002 |
| 80 | Tree cover, needle-leaved, deciduous, closed to open (> 15%) | 122 069 | 50 886 | 41.7 | 9.1 | 30 476 | 25.0 | 5.85 |
| 81 | Tree cover, needle-leaved, deciduous, closed (> 40%) | 50 | 42 | 84.0 | 0.01 | 2 | 4.0 | 0.00 |
| 90 | Tree cover, mixed leaf type (broadleaved and needle-leaved) | 41 711 | 7403 | 17.7 | 1.3 | 20 275 | 48.6 | 3.89 |
| 100 | Mosaic tree and shrub (> 50%) / herbaceous (< 50%) | 64 709 | 22 209 | 34.3 | 4.0 | 21 231 | 32.8 | 4.07 |
| 110 | Mosaic herbaceous (> 50%) / tree and shrub (< 50%) | 17 340 | 6735 | 38.8 | 1.2 | 4290 | 24.7 | 0.82 |
| 120 | Shrubland | 156 515 | 42 938 | 27.4 | 7.7 | 38 586 | 24.7 | 7.40 |
| 121 | Shrubland evergreen | 3389 | 1272 | 37.5 | 0.2 | 1182 | 34.9 | 0.23 |
| 122 | Shrubland deciduous | 36 550 | 13 343 | 36.5 | 2.4 | 10 322 | 28.2 | 1.98 |
| 130 | Grassland | 197 266 | 54 845 | 27.8 | 9.9 | 51 572 | 26.1 | 9.89 |
| 140 | Lichens and mosses | 47 172 | 18 106 | 38.4 | 3.3 | 7534 | 16.0 | 1.45 |
| 150 | Sparse vegetation (tree/shrub & herbaceous cover) (< 15%) | 173 288 | 56 342 | 32.5 | 10.1 | 35 602 | 20.5 | 6.83 |
| 152 | Sparse shrub (< 15%) | 1138 | 382 | 33.6 | 0.1 | 210 | 18.5 | 0.04 |
| 153 | Sparse herbaceous (< 15%) | 4027 | 963 | 23.9 | 0.2 | 739 | 18.4 | 0.14 |
| 160 | Tree cover, flooded, fresh or brackish water | 13 005 | 7082 | 54.5 | 1.3 | 2483 | 19.1 | 0.48 |
| 170 | Tree cover, flooded, saline water | 2714 | 561 | 20.7 | 0.1 | 389 | 14.3 | 0.07 |
| 180 | Shrub or herbaceous cover | 38 427 | 13 329 | 34.7 | 2.4 | 12 184 | 31.7 | 2.34 |
| 190 | Urban areas | 12 241 | 2325 | 19.0 | 0.4 | 3205 | 26.2 | 0.61 |
| Total | 1 779 051 | 556 687 | 31.3 | 100 | 521 233 | 29.3 | 100 |
* TDP – Total degrading pixels
** TIP – Total improving pixels
Of the areas degrading over 1981–2003, 41% have continued to degrade through 1981–2021 (Fig. S1): mainly in the Democratic Republic of Congo (DR Congo), Angola, Zambia, swaths of boreal forest in Siberia and North America, mainland Southeast Asia, the East Indies, parts of North-central Australia, the Eurasian Steppes, and the Pampas and Chaco in South America.
Figure 4 shows NPP loss in the degrading areas. Globally, annual loss of NPP over the period 1981–2021 is 40.7 million tonnes of carbon (MtC); somewhat less than the annual loss of 41.5 MtC during 1981–2003. Overall, the degrading area has been increasing but the annual loss of NPP has declined.
Fig. 4.
NPP loss in degrading areas 1981–2021
Table 2 shows that the most extensive degrading areas are in Russia, Canada, USA, DR Congo, and Kazakhstan—not entirely according to the size of the countries: in terms of absolute NPP loss, the ranking is Russia, Canada, DR Congo, Kazakhstan, and China. Inevitably with their numerous inhabitants, China and India head the list of affected population with 119 and 110 million, respectively, but in both cases land degradation directly affects only 8% of their total population. In contrast, the 95 million people living on degrading land in Indonesia, 61 million in Ethiopia and 57 million in DR Congo comprise 34, 49 and 57% of their respective populations.
Comparing the two time periods (Table 3), there are big proportional increases in land degradation in Russia, Canada, USA, DR Congo, and Kazakhstan while there are big decreases in China, Indonesia, and Australia. The numbers of people involved reveal both triumphs and disasters. In China, the number of people directly affected fell from 437 to 119 million, in India from 177 to 110 million, and in Bangladesh from 73 to 5 million. In each case, millions have moved to the cities; by one estimate, China’s rural population decreased by 241 million between 1995 and 2014 (Kundu et al. 2020) but there has also been internal migration to the cities in Nigeria where the number of people in degrading areas still rose from 17 to 60 million, in DR Congo from 32 to 57 million, in Uganda from 4 to 25 million, and in Afghanistan from 0.7 to 8.8 million. And in scores of low- and middle-income countries, land degradation went from bad to worse without much effect on the global aggregate but with a devastating toll on their people and societies.
Land improvement
In contrast, 26.2% of global land has improved over 1981–2021, 10.5% more than over 1981–2003. By area, Russia leads with 4.9 million km2, followed by Australia with 3.6 million km2 and China with 3.4 million km2. But the proportions of improved land in these huge countries are otherwise: Russia 29%, Australia 48%, China 36% and, by this measure, Portugal is preeminent its 83 thousand km2 of improved land constitutes 89% of the country. Comparing improving areas with global land cover (ESA Copernicus 2023), Table 5 shows that 31% is scrub, 24% is broadleaved forest, 18% is needle-leaved forest, 14% is cropland, and 11% is grassland. By proportion of each land cover type, improved land constitutes 27% of all scrublands, 31% of broadleaved forest, 32% of needle-leaved forest, 36% of cropland, and 24% of grassland.
Figure 3 and Table 4 highlight dramatic recent improvements in cropland in China, India, and the European Union that confirm optimism about the potential of consistent, effective policies. Figure 5 depicts the global trend in the annual sum NDVI between 1981 and 2021, also distinguishing cropland and non-cropland and, individually, China and India. Globally, annual sum NDVI increased by 2.3% (P < 0.05), 5.8% in cropland and 1.8% in non-cropland, but both China and India exceeded the global trends threefold, most notably in their improving cropland.
Fig. 5.
Aggregate NDVI, 1981–2022 for the World, China and India for all land cover, cropland and non-cropland
Since the 3rd Plenum of the 11th Central Committee of the Chinese Communist Party in 1978, policy has promoted transformation of the peasantry to a ‘new type of professional farmer’, supported by the world’s largest public agricultural extension service (Babu et al. 2015). At the same time, between 1978 and 2022, the proportion of China’s population living in cities rose from 17.9 to 61.4%. In the first decade of the new millennium, the built-up area rose by 78.5% (Bai et al. 2014), half of it by building directly on arable land and, yet, the sown area increased from 146 million ha in 1980 to 166 million ha in 2019 and gross production doubled (NSBC 2020a, 2020b). In India, agricultural input subsidies and price support have been critical. The European Union has operated a common agricultural policy since 1962; its focus has changed over the years but support for farmers has been unstinting. Australian farmers are not subsidised but they apply well-informed common sense; in recent years, nearly all of them have adopted no-till Conservation Agriculture, otherwise known as regenerative agriculture (Dent and Boincean 2023; Kassam and Kassam 2023)—forsaking the plough; maintaining ground cover by cash crops and cover crops and, between crops, a mulch of crop residues; and planting directly through the protective surface mulch. Australians have also learned not to allow accumulation of tinder on their forest floors, reverting to the previous successful practice of controlled burning. Countries with unacceptable levels of land degradation must surely consider whether any of these avenues of improvement is open to them. The Australian way has the advantage of requiring minimal government intervention—it has been adopted across 15% of the world’s cropland as a farmers’ movement (Kassam et al. 2023).
Only one quarter of improving areas showed improvement throughout both periods (Fig. S2). Figure 6 shows NPP gain in improving areas over the whole 41 years: globally, the annual NPP gain is 57.8 MtC, significantly greater than the 1981–2003 figure, leading to a total NPP gain of 2.36 GtC.
Fig. 6.
Global NPP gains in the improving areas over 1981–2021
If we take the net NPP gain or loss as an indicator of SDG15 land degradation neutrality, then Canada falls farthest short with a net NPP loss of 237.3 MtC. There were further big losses in DR Congo, Kazakhstan and Angola, amounting to 59, 47 and 41 MtC, respectively (Table 2). The greatest net gains have been in China, Australia, and Russia at 286, 123 and 96 MtC, respectively. However, when treated as a single entity, the European Union achieves the largest net gain at 300 MtC with no individual member state showing a net loss.
The improving areas more than doubled from 2003 to 2021 (Table 4). Many more people now live in improving areas—2.9 billion in 2021 compared with 0.8 billion in 2003: 664 million more people live on improving land in China, 538 million more in India, 118 million more in Bangladesh, 58 million more in Vietnam, and 20 million more in Nepal.
Interpretation of NDVI/NPP; limitations and policy considerations
Serendipitously, weather satellites hold up a mirror to biological productivity just as much as to weather systems. While these data illustrate interesting vegetation dynamics, it is worth reiterating that changes in climate-adjusted NDVI/NPP serve only as a proxy for land degradation or improvement. In particular, ambiguous data from the boreal forest belt almost certainly reflect catastrophic forest fires, as recorded by the special fire channel on MODIS Terra and Aqua satellites (Szpakowski and Jensen 2019; CAS 2023; You 2023), and outbreaks of pests like the mountain pine beetle (Kurz et al. 2008). These are part of the natural cycle. Therefore, we might expect recovery but ecosystem recovery is slow in cold and dry regions and if, as seems likely, these events are themselves related to climate change, the ecosystem may not recover. Moreover, changes in land use from forest to cropland, increases in grazing pressure, or market adjustments to a less-intensive management will all decrease NDVI. These changes might or might not be accompanied by soil erosion, salinity, or other symptoms of land degradation that require acute attention. In the same vein, pastoralists will not consider bush encroachment as land improvement although it may increase biomass.
So, how is Gaia doing? Over the period of study, gains have generally outpaced losses: global biological productivity has been increasing, and increasing faster in the last 20 years than in the twenty years before—benefitting from increasing atmospheric carbon dioxide concentration, nitrogen deposition, temperature, and rainfall. This statement requires qualification. First, Fig. 3 illustrates significant regional disparities: between improvements in the European Union, China and India; and big losses across boreal forests, sub-Saharan Africa, parts of southeast Asia, the Steppes, Cerrado, Pampas, and Chaco. The green revolution involved unprecedented application of fertilisers, irrigation, and new crop varieties that can respond to these inputs by economies that could afford them: people that could not afford them have been bypassed. Secondly, crude global and national accounting conceals significant land degradation. The patterns of megafires in boreal forests and degradation of globally significant grain-producing areas on the steppes were already evident in the 1981–2003 data. They are more prominent in the extended data, which may be attributed to enhanced global heating and accompanying drought in continental areas where rainfall has not also increased. Crop yields across the steppes have stalled or even decreased during the study period; air temperatures have been increasing by 0.45 °C every decade but precipitation has remained much the same so, e.g. in southern Ukraine the soil water deficit has increased from 300 mm in 1990 to 400 mm in 2000 and is heading for 550 mm in 2050 and 700 mm in 2100. This trend will render half of Ukraine’s current arable land unsuitable for rainfed crops by 2050 and two-thirds by 2100 (Romaschenko et al. 2025). Thirdly, more primary productivity is not necessarily better and, certainly, not sustainable if is achieved by sacrificing biodiversity, expending more energy that it produces, and depleting aquifers. Regenerative agriculture offers equally productive but more sustainable options.
Gaia’s gains in carbon capture are dwarfed by man-made carbon emissions: between 1981 and 2021, the land has captured 694 MtC (Table 2), merely a few per cent of 10 Gt annual fossil carbon emissions. Moreover, the increasing extent and frequency of megafires and unremitting forest clearance expose the fragility of the grand strategy embraced by the Kyoto Protocol of the UN Convention on Climate Change that relies on forests as a carbon sink. We should do well to leave fossil fuels in the ground and invest in carbon storage with a longer half-life, such as soil organic matter that holds more carbon than all standing vegetation and the atmosphere combined.
The global assessment and trends over policy-significant 20-year periods show that 1.2 billion people live in areas that have degraded over the past 20 years, compared with 2.9 billion people living in areas that have improved. This underscores the power of consistent, targeted policies on land resilience and sustainability but, remembering Gaia’s greater domain, the 70% that is ocean does not figure in our calculations. Nor does the increasing area occupied by urban and industrial development and infrastructure. Both cry out for new lines of research. Urban greenness attracts increasing attention in the field of public health and well-being, particularly the air-conditioning roles of vegetation, trapping poisonous pollutants and dramatically lowering summer temperatures. GIMMS data at 9-km definition are too coarse to be useful in this case but MODIS data might be employed and cities have the resources to initiate specific, street-by-street programmes using drones.
For all the caveats, NPP data are of immediate practical value to policy makers who need to know exactly where and to what extent biologically significant changes are happening. Long-term trends of NDVI/NPP derivatives provide a globally consistent yardstick. They direct attention to places that demand investigation and action on the ground, as intended under the parent programme of the UN Food and Agriculture Organisation: Land Degradation Assessment in Drylands (Biancalani et al. 2013). It is hard to distinguish between statistically significant changes and practically significant changes—short-term variability reflects seasonal weather and local management decisions—but maps of long-standing trends should be on the desks, or pinned to the wall, in front of every policy maker. They are prescient predictors of political trouble.
Conclusions
Changes in land degradation and improvement since 1981 have been assessed by proxy using remotely sensed NDVI translated into net primary productivity. This presents a different picture from previous qualitative assessments of land degradation that compounded current and historical processes but NDVI/NPP is only a proxy—some elements of land degradation and improvement, such as biodiversity, are not captured by NPP.
In the period 1981–2021, 28.5% of land was degrading—most notably through megafires in boreal forests, land clearance and cultivation in sub-Saharan Africa and the East Indies, and bare ground across the steppes. The degraded area was 4.5% greater than in 1981–2003 but fewer people were affected—1.2 billion compared to 1.5 billion. Over the longer period, consistent policies on sustainability increased biological productivity on 26% of land (10.5% more than 1981–2003).
At the present time, political and financial support for continuation of these policies is uncertain. But evidence-based decision-making still needs evidence. Developing any new policies will require quantitative data on the extent and degree of active land degradation to show where action is necessary.
Every line of Tables 3 and 4 tells a story but GIMMS holds more, and more-detailed information; significant variations within countries can be distinguished by regional analysis and MODIS NPP can deliver this information at the field scale.
It remains up to politicians to ask the right questions: Where, exactly, is productivity better, or worse? And why? That is to say: What are the proximal and underlying causes? What can and should be done to solve the problems or take advantage of the opportunities—in the short term and in the longer term? Who is responsible? Is it me? And to act upon the answers. Clearly, information is needed for the appropriate recommendation domains which, in most cases, will be nested within the national pictures that we have presented; and at the landscape level, the defining roles of terrain, soils and drainage, strategy, and implementation can be incorporated.
Supplementary Information
Below is the link to the electronic supplementary material.
Acknowledgements
In the beginning, J. Compton Tucker kept the wavebands measured by the AVHRR separate—so weather satellites watch more than the weather. We thank A. Kooiman, G. Genova, M. Ruiperez Gonzalez, N. Batjes and J. Leenaars for an internal review of the paper; and we are grateful to the editors and anonymous reviewers for goading us to do better.
Biographies
Zhanguo Bai
is a Senior Researcher at ISRIC – World Soil Information, the Netherlands. His research interests include soil erosion and soil & water conservation, land degradation assessment and sustainable land management using GIS, remote sensing, radioactive and isotopic tracing.
Jason Daniel Russ
is a Senior Economist in the Office of the Chief Economist of the Sustainable Development Practice at the World Bank. His research interests include water, agricultural, and environmental economics.
Kentaro Florian Mayr
is a Consultant in the Office of the Chief Economist of the Sustainable Development Practice at the World Bank. His research interests are in applied econometrics, machine learning, and environmental economics.
David Dent
was formerly Director of ISRIC—World Soil Information. He has 60-years’ experience of soil survey, land evaluation and land use planning with national and international agencies in every continent and as a university teacher in environmental sciences. He has special expertise in problem soils, salinity, water resources and the interface of science and policy.
Declarations
Conflict of interest
The authors declare that they have no conflicts of interest regarding this manuscript.
Footnotes
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- Alexandrov, G.A., and T. Oikawa. 1997. Contemporary variations in terrestrial net primary productivity: The use of satellite data in the light of the extremal principle. Ecological Modelling 95: 113–118. [Google Scholar]
- Amelung, W., D. Bossio, W. de Vries, I. Kögel-Knabner, J. Lehmann, R. Amundson, R. Bol, C. Collins, et al. 2020. Towards a global-scale soil climate mitigation strategy. Nature Communications 11: 5427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amundson, R., A.A. Berhe, J.W. Hopmans, C. Olson, A.E. Sztein, and D.L. Sparks. 2015. Soil and human security in the 21st century. Science 348: 1261071. [DOI] [PubMed] [Google Scholar]
- Asrar, G.M., M. Fuchs, E.T. Kanemasu, and J. Hatfield. 1984. Estimating absorbed photosynthetically active radiation and leaf area index from spectral reflectance in wheat. Agronomy Journal 87: 300–306. [Google Scholar]
- Babu, S.C., J. Huang, P. Venkatesh, and Y. Zhang. 2015. A comparative analysis of agricultural research and extension reforms in China and India. China Agricultural Economic Review 7: 541–572. [Google Scholar]
- Bai, X., P. Shi, and Y. Liu. 2014. Society: Realising China’s urban dream. Nature 509: 158–160. [DOI] [PubMed] [Google Scholar]
- Bai, Z.G., and D.L. Dent. 2006. Global assessment of land degradation and improvement: pilot study in Kenya. (Wageningen: Report 2006/01, ISRIC – World Soil Information).
- Bai, Z.G., and D.L. Dent. 2009. Recent land degradation and improvement in China. Ambio 38: 150–156. 10.1579/0044-7447-38.3.150. [DOI] [PubMed] [Google Scholar]
- Bai, Z.G., D.L. Dent and M.E. Schaepman. 2005. Quantitative global assessment of land degradation and improvement: pilot study in North China. (Wageningen: Report 2005/6, ISRIC – World Soil Information).
- Bai, Z.G., D.L. Dent, L. Olsson, and M.E. Schaepman. 2008. Proxy global assessment of land degradation. Soil Use and Management 24: 223–234. [Google Scholar]
- Beasley, R. 2021. Dead in the water. A very angry book about our greatest environmental catastrophe…the death of the Murray-Darling basin. Crows Nest NSW: Allen and Unwin. [Google Scholar]
- Biancalani, R., F. Nachtergaele, M. Petri, and S. Bunning. 2013. Land degradation assessment in drylands—Methodology and results. Rome: FAO. [Google Scholar]
- Borrelli, P., D.A. Robinson, L.R. Fleisher, E. Lugato, C. Ballabio, C. Alewell, K. Meusburger, S. Modugno, et al. 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications 8: 2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CAS. 2023. Blue book on forest fire carbon emissions research. Beijing: Chinese Academy of Sciences. [Google Scholar]
- Chen, S., and P. Rao. 2008. Land degradation monitoring using multi-temporal Landsat TM/ETM data in a transition zone between grassland and cropland of northeast China. International Journal of Remote Sensing 29: 2055–2073. [Google Scholar]
- Chen, X., Y. Wang, Y. Chen, S. Fu, and N. Zhou. 2023. NDVI-based assessment of land degradation trends in Balochistan, Pakistan, and analysis of the drivers. Remote Sensing 15: 2388. [Google Scholar]
- CIESIN. 2018. Gridded population of the World, Version 4: Land and Water Area, Revision 11, Palisades NY: Columbia University/NASA Socioeconomic Data and Applications Center. https://sedac.ciesin.columbia.edu/data/collection/gpw-v4/sets/browse (Accessed 8 June, 2023).
- Dent, D.L., and B.P. Boincean, eds. 2023. Regenerative agriculture. What’s missing? What do we still need to know? Cham: Springer Nature Switzerland. [Google Scholar]
- ESA Copernicus. 2023. Land cover classification gridded maps from 1992 to present derived from satellite observation. European Space Agency: Copernicus Climate Change Service Climate Data Store.
- Folke, C., S. Carpenter, T. Elmqvist, L. Gunderson, C.S. Holling, and B. Walker. 2002. Resilience and sustainable development: Building adaptive capacity in a world of transformations. Ambio 31: 437–440. 10.1579/0044-7447-31.5.437. [DOI] [PubMed] [Google Scholar]
- Gafurova, L., and M. Juliev. 2021. Soil degradation problems and foreseen solutions in Uzbekistan. In Regenerative agriculture: What’s missing? What do we still need to know?, ed. David Dent and Boris Boincean, 59–67. Cham: Springer. [Google Scholar]
- Grinand, C., G. Vielledent, T. Razafgimbo, J.R. Rakotoarijaona, M. Nourtier, and M. Bernoux. 2020. Landscape-scale spatial modelling of deforestation, land degradation, and regeneration using machine learning tools. Land Degradation & Development 31: 1699–1712. [Google Scholar]
- Harris, I., T.J. Osborn, P. Jones, and D. Lister. 2020. Version 4 of the CRU TS Monthly High-Resolution Gridded Multivariate Climate Dataset. Scientific Data. Norwich: Climatic Research Unit, University of East Anglia. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higginbottom, T.P., and E. Symeonakis. 2014. Assessing land degradation and desertification using vegetation index data: Current frameworks and future directions. Remote Sensing 6: 9552–9575. [Google Scholar]
- Ibrahim, Y.Z., H. Balzter, J.D. Kaduk, and C.J. Tucker. 2015. Land degradation assessment using residual trend analysis of GIMMS NDVI3g, soil moisture and rainfall in Sub-Saharan West Africa from 1982 to 2012. Remote Sensing 7: 5471–5494. [Google Scholar]
- Kassam, A., and L. Kassam. 2023. Rethinking food and agriculture. New ways forward. Duxford: Woodhead Publishing. [Google Scholar]
- Kassam, A., T. Friedrich, and R. Derpsch. 2023. State of the global adoption and spread of Conservation Agriculture. In Advances in conservation agriculture. Volume 3: Adoption and spread, ed. A. Kassam, 1–14. Cambridge: Burleigh Dodds. [Google Scholar]
- Kirui, O.K., A. Mirzabaev, and J. von Braun. 2021. Assessment of land degradation ‘on the ground’ and from ‘above.’ SN Applied Science 3: 318. [Google Scholar]
- Kundu, D., T. Debnath, and B. Lahiri. 2020. Overview of Urban Policies in China. In Developing national urban policies, ed. D. Kundu, R. Seitchiping, and M. Kinjanhu. Singapore: Springer. [Google Scholar]
- Kurz, W.A., C.C. Dymond, G. Stinson, G.J. Rampley, E.T. Neilson, A.L. Carroll, T. Ebata, and L. Safranyik. 2008. Mountain pine beetle and forest carbon feedback to climate change. Nature 452: 987–990. [DOI] [PubMed] [Google Scholar]
- Le Houérou, H.N. 1984. Rain-use efficiency: A unifying concept in arid-land ecology. Journal of Arid Environments 7: 213–247. [Google Scholar]
- Livezey, R.E., and W.Y. Chen. 1983. Statistical field significance and its determination by Monte Carlo techniques. Monthly Weather Review 111: 46–59. [Google Scholar]
- Lovelock, J.E. 1979. Gaia. A new look at life on Earth. Oxford: Oxford University Press. [Google Scholar]
- McCammon, A.L.T. 1992. UN conference on environment and development, held in Rio de Janeiro, Brazil, during 3–14 June 1992, and the ’92 Global Forum, Rio de Janeiro, Brazil, 1–14 June 1992. Environmental Conservation 19: 372–373. [Google Scholar]
- Melillo, J., A.D. McGuire, D.W. Kicklighter, B. Moore, C.J. Vorosmarty, and A.L. Schloss. 1993. Global climate-change and terrestrial net primary production. Nature 363: 6426. [Google Scholar]
- Millennium Ecosystem Assessment. 2005. Ecosystems and human well-being: Wetlands and water synthesis. Washington DC: World Resources Institute. [Google Scholar]
- Myneni, R.B., R.R. Nemani, and S.W. Running. 1997. Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Transactions on Geoscience and Remote Sensing 35: 1380–1393. [Google Scholar]
- NBSC. 2020a. China statistical yearbook 2020. Beijing: China Statistics Press. [Google Scholar]
- NBSC. 2020b. Bulletin on the national grain output in 2020. Beijing: National Bureau of Statistics of China. [Google Scholar]
- Olsson, L., H. Barbosa, S. Bhadwal, A. Cowie, K. Delusca, D. Flores-Renteria, K. Hermans, E. Jobbagy, et al. 2019. Land degradation. In Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, ed. P.R. Shukla, et al. Geneva: IPCC. [Google Scholar]
- Pinzon, J.E., E.W. Pak, C.J. Tucker, U.S. Bhatt, G.V. Frost and M.J. Macander. 2023. Global Vegetation Greenness (NDVI) from AVHRR GIMMS–3G+, 1981–2022. ORNL DAAC, Oak Ridge, Tennessee, USA.
- Prince, S.D. 2019. Challenges for remote sensing of the Sustainable Development Goal SDG15.3.1 productivity indicator. Remote Sensing of Environment 234: 11142. [Google Scholar]
- Prince, S.D., K.J. Wessels, C.J. Tucker, and S.E. Nicholson. 2007. Desertification in the Sahel: A reinterpretation of a reinterpretation. Global Change Biology 13: 1308–1313. [Google Scholar]
- R Core Team. 2023. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. [Google Scholar]
- Ripple, W.J. 1985. Asymptotic reflectance characteristics of grass vegetation. Photogrammetric Engineering and Remote Sensing 51: 1915–1921. [Google Scholar]
- Rivera-Marin, D., J. Dash, and B. Ogutu. 2022. The use of remote sensing for desertification studies: A review. Journal of Arid Environments 206: 104829. [Google Scholar]
- Romashchenko, M., B. Faybishenko, D. Onopriienko, H. Hapich, R. Novitskyi, D. Dent., R. Saidak, S. Usatyi and H. Roubik. 2025. Prospects for restoration of Ukraine’s irrigation system. Water International 50: 104–120.
- Running, S., and M. Zhao. 2021. MODIS/Terra net primary production gap-filled yearly L4 Global 500m SIN Grid V061. 2021. Sioux Falls SD: NASA EOSDIS Land Processes Distributed Active Archive Center. [Google Scholar]
- Schillaci, C., A. Jones, D. Simoes Vieira, M. Munafò, and L. Montanarella. 2023. Evaluation of the United Nations Sustainable Development Goal 15.3.1 indicator of land degradation in the European Union. Land Degradation & Development 34: 250–268. [Google Scholar]
- Sha, Z., Y. Bai, R. Li, H. Lan, X. Zhang, J. Li, X. Liu, S. Chang, et al. 2022. The global carbon sink potential of terrestrial vegetation can be increased substantially by optimal land management. Communications Earth & Environment 3: 8. [Google Scholar]
- Shukla, P.R., et al. (eds.). 2019. IPCC, Climate Change and Land, an IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Geneva: IPCC. [Google Scholar]
- Sims, N.C., G.J. Newnham, J.R. England, et al. 2021. Good Practice Guidance. SDG Indicator 15.3.1, Proportion of land that is degraded over total land area. Version 2.0. Bonn: UNCCD. [Google Scholar]
- Sonneveld, B.G.J.S., and D.L. Dent. 2007. How good is GLASOD? Journal of Environmental Management 90: 274–283. [DOI] [PubMed] [Google Scholar]
- Szpakowski, D., and J. Jensen. 2019. A review of the applications of remote sensing for fire ecology. Remote Sensing 11: 2638. [Google Scholar]
- Tiefenbacher, A., T. Sandén, H.P. Haslmayr, J. Miloczki, W. Wenzel, and H. Spiegel. 2021. Optimizing carbon sequestration in croplands: A synthesis. Agronomy 11: 882. [Google Scholar]
- Tóth, G., T. Hermann, M.A. da Silva, and L. Montanarella. 2018. Monitoring soil for sustainable development and land degradation neutrality. Environmental Monitoring and Assessment 190: 57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tucker, C.J., L.D. Miller, and R.L. Pearson. 1975. Shortgrass prairie spectral measurements. Photogrammetric Engineering & Remote Sensing 41: 11157–11162. [Google Scholar]
- Tziolas, N., N. Tzakiridas, Y. Ogen, E. Kalopesa, E. Ben-Dor, J. Theocharis, and G. Zalidis. 2020. An integrated methodology using open soil spectral libraries and Earth Observation data for soil organic carbon estimations in support of soil-related SDGs. Remote Sensing of Environment 244: 111793. [Google Scholar]
- United Nations. 2024a. Climate action: land and climate change.https://www.un.org/en/climatechange/science/climate-issues/land (Accessed 5 January 2024).
- United Nations. 2024b. World Population Prospects 2024. United Nations Department of Economic and Social Affairs, Population Division.
- Wang, J.Z., J. Zhen, W. Hu, S. Chen, I. Lizaga, M. Zeraatpisheh, and X. Yang. 2023. Remote sensing of soil degradation: Progress and perspective. International Soil and Water Conservation Research 11: 429–454. [Google Scholar]
- Yengoh, G.T., D.L. Dent, L. Olsson, A.E. Tengberg, and C.J. Tucker. 2016. Use of normalized difference vegetation index (NDVI) to assess land degradation at multiple scales: Current status, future trends and practical considerations. Cham: Springer Briefs in Environmental Science. [Google Scholar]
- You, X. 2023. Surge in extreme forest fires fuels global emissions. Nature. 10.1038/d41586-023-04033-y. [DOI] [PubMed] [Google Scholar]
- Zhang, G., and H. Wu. 2018. From “problems” to “solutions”: Soil functions for realization of sustainable development goals. Bulletin of Chinese Academy of Sciences 33: 124–134. [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.






