Abstract
1. The morphological and electrophysiological characteristics of sagittal cerebellar slices of adult rat cerebellum maintained in vitro were studied. 2. The ultrastructural preservation of the different neuronal cell types in many areas of these slices after 2-3 h incubation was very similar to that observed in material fixed in situ. A limited degree of glial swelling was observed in some regions. 3. The conduction velocity of parallel fibres was within the normal in vivo range and the fibres retained their ability to activate Purkinje cells and inhibitory interneurones. 4. Purkinje cells, recorded intrasomatically, responded to white matter stimulation with characteristic antidromic activation and climbing fibre responses, and typical parallel fibre responses were evoked following parallel fibre stimulation. 5. Climbing fibre excitatory post-synaptic potentials (e.p.s.p.s) were very similar whether recorded in the dendrites or somata of Purkinje cells. By contrast, marked differences in the associated spike potentials were evident, the initial fast, low-threshold somatic spike appearing in the dendrites as a slow, high-threshold spike. The secondary spikes, both in the soma and dendrites, were of the latter type. 6. The initial somatic spike was readily inactivated by cell depolarization but resisted moderate hyperpolarization, whereas the converse was true for the slow, high-threshold spikes recorded in the dendrites. These differences suggest that these responses are generated in the soma and in the dendrites respectively. 7. Climbing fibre and parallel fibre e.p.s.p.s recorded in Purkinje cell somata were reversed under depolarizing current injected through the recording micro-electrode. As in vivo, the parallel fibre e.p.s.p.s was more sensitive to injected current than the climbing fibre e.p.s.p. in several instances, despite the more proximal location of the synapses involved.
Full text
PDF













Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Calvin W. H. Dendritic synapses and reversal potentials: theoretical implications of the view from the soma. Exp Neurol. 1969 Jun;24(2):248–264. doi: 10.1016/0014-4886(69)90018-1. [DOI] [PubMed] [Google Scholar]
- Chujo T., Yamada Y., Yamamoto C. Sensitivity of Purkinje cell dendrites to glutamic acid. Exp Brain Res. 1975 Sep 29;23(3):293–300. doi: 10.1007/BF00239741. [DOI] [PubMed] [Google Scholar]
- Crepel F., Delhaye-Bouchaud N. Distribution of climbing fibres on cerebellar Purkinje cells in X-irradiated rats. An electrophysiological study. J Physiol. 1979 May;290(2):97–112. doi: 10.1113/jphysiol.1979.sp012762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crepel F., Delhaye-Bouchaud N. Intracellular analyses of synaptic potentials in cerebellar Purkinje cells of the rat. Brain Res. 1978 Oct 20;155(1):176–181. doi: 10.1016/0006-8993(78)90321-9. [DOI] [PubMed] [Google Scholar]
- Crepel F. Excitatory and inhibitory processes acting upon cerebellar Purkinje cells during maturation in the rat; influence of hypothyroidism. Exp Brain Res. 1974;20(4):403–420. doi: 10.1007/BF00237384. [DOI] [PubMed] [Google Scholar]
- Dupont J. L., Crepel F., Delhaye-Bouchaud N. Influence of bicuculline and picrotoxin on reversal properties of excitatory synaptic potentials in cerebellar Purkinje cells of the rat. Brain Res. 1979 Sep 21;173(3):577–580. doi: 10.1016/0006-8993(79)90256-7. [DOI] [PubMed] [Google Scholar]
- Eccles J. C., Llinás R., Sasaki K. The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol. 1966 Jan;182(2):268–296. doi: 10.1113/jphysiol.1966.sp007824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GASSER H. S. Properties of dorsal root unmedullated fibers on the two sides of the ganglion. J Gen Physiol. 1955 May 20;38(5):709–728. doi: 10.1085/jgp.38.5.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garthwaite J., Woodhams P. L., Collins M. J., Balazs R. On the preparation of brain slices: morphology and cyclic nucleotides. Brain Res. 1979 Sep 14;173(2):373–377. doi: 10.1016/0006-8993(79)90641-3. [DOI] [PubMed] [Google Scholar]
- Garthwaite J., Woodhams P. L., Collins M. J., Balázs R. A morphological study of incubated slices of rat cerebellum in relation to postnatal age. Dev Neurosci. 1980;3(2):90–99. doi: 10.1159/000112381. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackett J. T. Calcium dependency of excitatory chemical synaptic transmission in the frog cerebellum in vitro. Brain Res. 1976 Sep 10;114(1):35–46. doi: 10.1016/0006-8993(76)91005-2. [DOI] [PubMed] [Google Scholar]
- Hounsgaard J., Yamamoto C. Dendritic spikes in Purkinje cells of the guinea pig cerebellum studied in vitro. Exp Brain Res. 1979 Oct;37(2):387–398. doi: 10.1007/BF00237721. [DOI] [PubMed] [Google Scholar]
- Llinas R., Nicholson C. Electrophysiological properties of dendrites and somata in alligator Purkinje cells. J Neurophysiol. 1971 Jul;34(4):532–551. doi: 10.1152/jn.1971.34.4.532. [DOI] [PubMed] [Google Scholar]
- Llinás R., Hess R. Tetrodotoxin-resistant dendritic spikes in avian Purkinje cells. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2520–2523. doi: 10.1073/pnas.73.7.2520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Llinás R., Nicholson C. Reversal properties of climbing fiber potential in cat Purkinje cells: an example of a distributed synapse. J Neurophysiol. 1976 Mar;39(2):311–323. doi: 10.1152/jn.1976.39.2.311. [DOI] [PubMed] [Google Scholar]
- Llinás R., Sugimori M. Calcium conductances in Purkinje cell dendrites: their role in development and integration. Prog Brain Res. 1979;51:323–334. doi: 10.1016/S0079-6123(08)61312-6. [DOI] [PubMed] [Google Scholar]
- Martinez F. E., Crill W. E., Kennedy T. T. Electrogenesis of cerebellar Purkinje cell responses in cats. J Neurophysiol. 1971 May;34(3):348–356. doi: 10.1152/jn.1971.34.3.348. [DOI] [PubMed] [Google Scholar]
- Nelson P. G., Frank K. Anomalous rectification in cat spinal motoneurons and effect of polarizing currents on excitatory postsynaptic potential. J Neurophysiol. 1967 Sep;30(5):1097–1113. doi: 10.1152/jn.1967.30.5.1097. [DOI] [PubMed] [Google Scholar]
- Okamoto K., Quastel J. H. Effects of amino acids and convulsants on spontaneous action potentials in cerebellar cortex slices. Br J Pharmacol. 1976 May;57(1):3–15. doi: 10.1111/j.1476-5381.1976.tb07650.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okamoto K., Quastel J. H. Spontaneous action potentials in isolated guinea-pig cerebellar slices: effects of amino acids and conditions affecting sodium and water uptake. Proc R Soc Lond B Biol Sci. 1973 Aug 31;184(1074):83–90. doi: 10.1098/rspb.1973.0032. [DOI] [PubMed] [Google Scholar]
- Pellionisz A., Llinás R. A computer model of cerebellar Purkinje cells. Neuroscience. 1977;2(1):37–48. doi: 10.1016/0306-4522(77)90066-5. [DOI] [PubMed] [Google Scholar]
- Rall W. Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol. 1967 Sep;30(5):1138–1168. doi: 10.1152/jn.1967.30.5.1138. [DOI] [PubMed] [Google Scholar]
- Richards C. D., Sercombe R. Calcium, magnesium and the electrical activity of guinea-pig olfactory coex in vitro. J Physiol. 1970 Dec;211(3):571–584. doi: 10.1113/jphysiol.1970.sp009294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong R. K., Prince D. A., Basbaum A. I. Intradendritic recordings from hippocampal neurons. Proc Natl Acad Sci U S A. 1979 Feb;76(2):986–990. doi: 10.1073/pnas.76.2.986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto C., Bak I. J., Kurokawa M. Ultrastructural changes associated with reversible and irreversible suppression of electrical activity in olfactory cortex slices. Exp Brain Res. 1970 Nov 26;11(4):360–372. doi: 10.1007/BF00237909. [DOI] [PubMed] [Google Scholar]
- Yamamoto C. Electrical activity observed in vitro in thin sections from guinea-pig cerebellum. Jpn J Physiol. 1974 Apr;24(2):177–188. doi: 10.2170/jjphysiol.24.177. [DOI] [PubMed] [Google Scholar]
- Yamamoto C. Recording of electrical activity from microscopically identified neurons of the mammalian brain. Experientia. 1975 Mar 15;31(3):309–311. doi: 10.1007/BF01922555. [DOI] [PubMed] [Google Scholar]