Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1981 Jul;316:153–161. doi: 10.1113/jphysiol.1981.sp013779

Applicability of models for carrier-mediated serotonin transport to pools of serotonin in intact human platelets.

J L Costa, D L Murphy, H Stark
PMCID: PMC1248141  PMID: 7320861

Abstract

Intact human platelets can accumulate serotonin (5HT) in compartments which are vesicular (thrombin-releasable) or extra-vesicular (non-thrombin-releasable). 1. The net accumulation of extracellular 5HT in either compartment is not coupled in a reciprocal fashion to the presence of appropriate sodium gradients across the cell plasma membrane, and 5HT already present in either compartment is not removed when trans-membrane sodium gradients are abolished or reversed. 2. Net counter-transport of 5HT in either compartment is not detectable. 3. The data are not consistent with transport models such as that for glucose in which appropriate sodium gradients produce gradients of a co-transported molecule, or with models in which counter-transport can occur.

Full text

PDF
153

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BORN G. V., GILLSON R. E. Studies on the uptake of 5-hydroxytryptamine by blood platelets. J Physiol. 1959 Jun 11;146(3):472–491. doi: 10.1113/jphysiol.1959.sp006206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chong G., Kay W. W. Sodium-dependent transport of 5-hydroxytryptamine (serotonin) by canine blood platelets. Arch Biochem Biophys. 1977 Mar;179(2):600–607. doi: 10.1016/0003-9861(77)90148-5. [DOI] [PubMed] [Google Scholar]
  3. Corash L., Shafer B., Perlow M. Heterogeneity of human whole blood platelet subpopulations. II. Use of a subhuman primate model to analyze the relationship between density and platelet age. Blood. 1978 Oct;52(4):726–734. [PubMed] [Google Scholar]
  4. Corash L., Tan H., Gralnick H. R. Heterogeneity of human whole blood platelet subpopulations. I. Relationship between buoyant density, cell volume, and ultrastructure. Blood. 1977 Jan;49(1):71–87. [PubMed] [Google Scholar]
  5. Costa J. L., Murphy D. L., Kafka M. S. Demonstration and evaluation of apparent cytoplasmic and vesicular serotonin compartments in human platelets. Biochem Pharmacol. 1977 Mar 15;26(6):517–521. doi: 10.1016/0006-2952(77)90327-6. [DOI] [PubMed] [Google Scholar]
  6. Costa J. L., Murphy D. L. Platelet 5-HT uptake and release stopped rapidly by formaldehyde. Nature. 1975 May 29;255(5507):407–408. doi: 10.1038/255407a0. [DOI] [PubMed] [Google Scholar]
  7. Crane R. K. The gradient hypothesis and other models of carrier-mediated active transport. Rev Physiol Biochem Pharmacol. 1977;78:99–159. doi: 10.1007/BFb0027722. [DOI] [PubMed] [Google Scholar]
  8. Detwiler T. C., Feinman R. D. Kinetics of the thrombin-induced release of calcium (II) by platelets. Biochemistry. 1973 Jan 16;12(2):282–289. doi: 10.1021/bi00726a017. [DOI] [PubMed] [Google Scholar]
  9. Feinberg H., Sandler W. C., Scorer M., Le Breton G. C., Grossman B., Born G. V. Movement of sodium into human platelets induced by ADP. Biochim Biophys Acta. 1977 Oct 17;470(2):317–324. doi: 10.1016/0005-2736(77)90109-2. [DOI] [PubMed] [Google Scholar]
  10. Feinstein M. B., Henderson E. G., Sha'afi R. I. The effects of alterations of transmembrane Na+ and K+ gradients by ionophores (nigericin, monensin) on serotonin transport in human blood platelets. Biochim Biophys Acta. 1977 Jul 14;468(2):284–295. doi: 10.1016/0005-2736(77)90121-3. [DOI] [PubMed] [Google Scholar]
  11. Murphy D. L., Colburn R. W., Davis J. M., Bunney W. E., Jr Stimulation by lithium of monoamine uptake in human platelets. Life Sci. 1969 Nov 1;8(21):1187–1193. doi: 10.1016/0024-3205(69)90047-2. [DOI] [PubMed] [Google Scholar]
  12. Rudnick G. Active transport of 5-hydroxytryptamine by plasma membrane vesicles isolated from human blood platelets. J Biol Chem. 1977 Apr 10;252(7):2170–2174. [PubMed] [Google Scholar]
  13. Rudnick G., Nelson P. J. Reconstitution of 5-hydroxytryptamine transport from cholate-disrupted platelet plasma membrane vesicles. Biochemistry. 1978 Nov 28;17(24):5300–5303. doi: 10.1021/bi00617a033. [DOI] [PubMed] [Google Scholar]
  14. Sneddon J. M. Blood platelets as a model for monoamine-containing neurones. Prog Neurobiol. 1973;1(2):151–198. doi: 10.1016/0301-0082(73)90019-1. [DOI] [PubMed] [Google Scholar]
  15. Sneddon J. M. Relationship between internal Na + -K + and the accumulation of 14 C-5-hydroxytryptamine by rat platelets. Br J Pharmacol. 1971 Dec;43(4):834–844. doi: 10.1111/j.1476-5381.1971.tb07220.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stahl S. M., Meltzer H. Y. A kinetic and pharmacologic analysis of 5-hydroxytryptamine transport by human platelets and platelet storage granules: comparison with central serotonergic neurons. J Pharmacol Exp Ther. 1978 Apr;205(1):118–132. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES