Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1981 Jul;316:163–175. doi: 10.1113/jphysiol.1981.sp013780

Excitation and inhibition of cardiac vagal motoneurones by electrical stimulation of the carotid sinus nerve.

D I McCloskey, E K Potter
PMCID: PMC1248142  PMID: 7320862

Abstract

1. The carotid sinus nerve was electrically stimulated in dogs anaesthetized with chloralose. Stimuli (1 ms, 1-10 V, less than or equal to 1 Hz) evoked responses in single cardiac efferent fibres dissected from the cervical part of the vagus nerve. The mean latencies of these responses varied, from fibre to fibre, between 30 and 120 ms. 2. Stimuli given during the expiratory phase of the respiratory cycle evoked vagal responses with a shorter latency than similar stimuli given only during the inspiratory phase of the respiratory cycle. 3. Following the vagal response to carotid sinus nerve stimulation a period of inhibition of vagal activity, lasting 100-150 ms, occurred. Refractoriness of the responding vagal motoneurone following an action potential could not account for this post-excitatory depression. 4. The inhibitory effects of electrical stimulation of the carotid sinus nerve were further studied by applying pairs of similar electrical stimuli to the carotid sinus nerve. The second stimulus of a pair had to be given 80-100 ms after the first to evoke a second response. 5. Trains of electrical stimuli (30-100 Hz) were also studied. At low frequencies the inhibitory effect of successive stimuli on vagal responses became less marked, but at higher frequencies only the first and last stimulus of the train reliably evoked responses. For trains of stimuli at both low and high frequencies, the last stimulus of the train evoked a vagal response, which was succeeded by a period of inhibition of vagal firing: this inhibition was then followed by further excitation before vagal discharge returned to resting levels.

Full text

PDF
163

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Black A. M., Torrance R. W. Respiratory oscillations in chemoreceptor discharge in the control of breathing. Respir Physiol. 1971 Nov;13(2):221–237. doi: 10.1016/0034-5687(71)90092-2. [DOI] [PubMed] [Google Scholar]
  2. DALY M. D., SCOTT M. J. The cardiovascular responses to stimulation of the carotid body chemoreceptors in the dog. J Physiol. 1963 Jan;165:179–197. doi: 10.1113/jphysiol.1963.sp007051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DE DALY M. B., SCOTT M. J. The effects of stimulation of the carotid body chemoreceptors on heart rate in the dog. J Physiol. 1958 Nov 10;144(1):148–166. doi: 10.1113/jphysiol.1958.sp006092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DOUGLAS W. W., RITCHIE J. M., SCHAUMANN W. A study of the effect of the pattern of electrical stimulation of the aortic nerve on the reflex depressor responses. J Physiol. 1956 Jul 27;133(1):232–242. doi: 10.1113/jphysiol.1956.sp005581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davidson N. S., Goldner S., McCloskey D. I. Respiratory modulation of barareceptor and chemoreceptor reflexes affecting heart rate and cardiac vagal efferent nerve activity. J Physiol. 1976 Jul;259(2):523–530. doi: 10.1113/jphysiol.1976.sp011480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eckberg D. L., Orshan C. R. Respiratory and baroreceptor reflex interactions in man. J Clin Invest. 1977 May;59(5):780–785. doi: 10.1172/JCI108699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fidone S. J., Sato A. A study of chemoreceptor and baroreceptor A and C-fibres in the cat carotid nerve. J Physiol. 1969 Dec;205(3):527–548. doi: 10.1113/jphysiol.1969.sp008981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gandevia S. C., McCloskey D. I., Potter E. K. Inhibition of baroreceptor and chemoreceptor reflexes on heart rate by afferents from the lungs. J Physiol. 1978 Mar;276:369–381. doi: 10.1113/jphysiol.1978.sp012240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goodman N. W. Efferent control of arterial chemoreceptors mediated by glossopharyngeal fibres and artifacts introduced by stimulation techniques. J Physiol. 1973 Apr;230(2):295–311. doi: 10.1113/jphysiol.1973.sp010189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haymet B. T., McCloskey D. I. Baroreceptor and chemoreceptor influences on heart rate during the respiratory cycle in the dog. J Physiol. 1975 Mar;245(3):699–712. doi: 10.1113/jphysiol.1975.sp010869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. IRIUCHIJIMA J., KUMADA M. ACTIVITY OF SINGLE VAGAL FIBERS EFFERENT TO THE HEART. Jpn J Physiol. 1964 Oct 15;14:479–487. doi: 10.2170/jjphysiol.14.479. [DOI] [PubMed] [Google Scholar]
  12. IRIUCHIJIMA J., KUMADA M. EFFERENT CARDIAC VAGAL DISCHARGE OF THE DOG IN RESPONSE TO ELECTRICAL STIMULATION OF SENSORY NERVES. Jpn J Physiol. 1963 Dec 15;13:599–605. doi: 10.2170/jjphysiol.13.599. [DOI] [PubMed] [Google Scholar]
  13. JEWETT D. L. ACTIVITY OF SINGLE EFFERENT FIBRES IN THE CERVICAL VAGUS NERVE OF THE DOG, WITH SPECIAL REFERENCE TO POSSIBLE CARDIO-INHIBITORY FIBRES. J Physiol. 1964 Dec;175:321–357. doi: 10.1113/jphysiol.1964.sp007520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KOEPCHEN H. P., LUX H. D., WAGNER P. H. [Studies on time requirement and central development of the pressor receptor heart reflex]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1961;273:413–430. [PubMed] [Google Scholar]
  15. Katona P. G., Poitras J. W., Barnett G. O., Terry B. S. Cardiac vagal efferent activity and heart period in the carotid sinus reflex. Am J Physiol. 1970 Apr;218(4):1030–1037. doi: 10.1152/ajplegacy.1970.218.4.1030. [DOI] [PubMed] [Google Scholar]
  16. Kendrick J. E., Matson G. L., Oberg B., Wennergren G. The effect of stimulus pattern on the pressure response to electrical stimulation of the carotid sinus nerve of cats. Proc Soc Exp Biol Med. 1973 Nov;144(2):412–416. doi: 10.3181/00379727-144-37602. [DOI] [PubMed] [Google Scholar]
  17. Kunze D. L. Reflex discharge patterns of cardiac vagal efferent fibres. J Physiol. 1972 Apr;222(1):1–15. doi: 10.1113/jphysiol.1972.sp009784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lopes O. U., Palmer J. F. Proposed respiratory 'gating' mechanism for cardiac slowing. Nature. 1976 Dec 2;264(5585):454–456. doi: 10.1038/264454a0. [DOI] [PubMed] [Google Scholar]
  19. McAllen R. M., Spyer K. M. The baroreceptor input to cardiac vagal motoneurones. J Physiol. 1978 Sep;282:365–374. doi: 10.1113/jphysiol.1978.sp012469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McAllen R. M., Spyer K. M. The location of cardiac vagal preganglionic motoneurones in the medulla of the cat. J Physiol. 1976 Jun;258(1):187–204. doi: 10.1113/jphysiol.1976.sp011414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Neil E., Palmer J. F. Effects of spontaneous respiration on the latency of reflex cardiac chronotropic responses to baroreceptor stimulation. J Physiol. 1975 May;247(1):16P–16P. [PubMed] [Google Scholar]
  22. Potter E. K. Inspiratory inhibition of vagal responses to baroreceptor and chemoreceptor stimuli in the dog. J Physiol. 1981 Jul;316:177–190. doi: 10.1113/jphysiol.1981.sp013781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sedin G. Responses of the cardiovascular system to carotid sinus nerve stimulation. Ups J Med Sci. 1976;81(1):1–17. doi: 10.3109/03009737609179015. [DOI] [PubMed] [Google Scholar]
  24. Seller H., Illert M. The localization of the first synapse in the carotid sinus baroreceptor reflex pathway and its alteration of the afferent input. Pflugers Arch. 1969;306(1):1–19. doi: 10.1007/BF00586608. [DOI] [PubMed] [Google Scholar]
  25. Trzebski A., Lipski J., Majcherczyk S., Szulczyk P., Chruścielewski L. Central organization and interaction of the carotid baroreceptor and chemoreceptor sympathetic reflex. Brain Res. 1975 Apr 11;87(2-3):227–237. doi: 10.1016/0006-8993(75)90420-5. [DOI] [PubMed] [Google Scholar]
  26. de Burgh Daly M. Interaction of cardiovascular reflexes. Sci Basis Med Annu Rev. 1972:307–332. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES