Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1981 Jul;316:191–202. doi: 10.1113/jphysiol.1981.sp013782

Developmental changes in epithelial transport characteristics of preimplantation rabbit blastocysts.

D J Benos
PMCID: PMC1248144  PMID: 7320864

Abstract

1. Transepithelial sucrose and urea permeability coefficients were measured in different-aged preimplantation rabbit blastocysts. Sucrose permeability remained constant from 4 to 6 days after fertilization (approximately 1 X 10(-8) cm s-1), but thereafter increased. Urea permeability was very low throughout this period (5 X 10(-7) cm s-1) but a phloretin-sensitive component to urea influx appeared between day 6 and day 7 post coitum (p.c.). 2. Glucose uptake was small (0.2-0.5 nmol cm-2 s-1 and independent of external sodium throughout the preimplantation period. 3. Methionine uptake was 10 times greater than glucose uptake, and was strongly dependent upon the presence of external sodium in 5 and 6 day p.c. blastocysts. The sodium dependence of methionine uptake was lost by the seventh day after fertilization. 4. The transepithelial electrical resistance was always less than 35 omega cm2 in 4 day p.c. blastocysts, and averaged 1758 omega cm2 in 6 day p.c. blastocysts. 5. The transepithelial influx of 140 La averaged 0.46 +/- 0.11 nmol cm-2 h-1 (n = 6) in 4 day p.c. blastocysts. The 5 day p.c. embryos, on the other hand were impermeable to lanthanum (n = 10). 6. These results indicate that the epithelium of the preimplantation rabbit blastocyst undergoes dramatic changes in transport characteristics with development. The blastocyst can be characterized as a 'leaky' transporting epithelium during the early blastocyst period, and as a 'tight' epithelium during the mid to late stages of the preimplantation period.

Full text

PDF
191

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarado F. Hypothesis for the interaction of phlorizin and phloretin with membrane carriers for sugars. Biochim Biophys Acta. 1967 Jul 3;135(3):483–495. doi: 10.1016/0005-2736(67)90038-7. [DOI] [PubMed] [Google Scholar]
  2. Benos D. J., Balaban R. S. Energy requirements of the developing mammalian blastocyst for active ion transport. Biol Reprod. 1980 Dec;23(5):941–947. doi: 10.1095/biolreprod23.5.941. [DOI] [PubMed] [Google Scholar]
  3. Borland R. M., Tasca R. J. Activation of a Na+-dependent amino acid transport system in preimplantation mouse embryos. Dev Biol. 1974 Jan;36(1):169–182. doi: 10.1016/0012-1606(74)90199-7. [DOI] [PubMed] [Google Scholar]
  4. Crane R. K. Na+ -dependent transport in the intestine and other animal tissues. Fed Proc. 1965 Sep-Oct;24(5):1000–1006. [PubMed] [Google Scholar]
  5. Cross M. H. Active sodium and chloride transport across the rabbit blastocoele wall. Biol Reprod. 1973 Jun;8(5):566–575. doi: 10.1093/biolreprod/8.5.566. [DOI] [PubMed] [Google Scholar]
  6. Daniel J. C., Jr The pattern of utilization of respiratory metabolic intermediates by preimplantation rabbit embryos in vitro. Exp Cell Res. 1967 Sep;47(3):619–624. doi: 10.1016/0014-4827(67)90020-1. [DOI] [PubMed] [Google Scholar]
  7. Diamond J. M. Twenty-first Bowditch lecture. The epithelial junction: bridge, gate, and fence. Physiologist. 1977 Feb;20(1):10–18. [PubMed] [Google Scholar]
  8. Ducibella T., Albertini D. F., Anderson E., Biggers J. D. The preimplantation mammalian embryo: characterization of intercellular junctions and their appearance during development. Dev Biol. 1975 Aug;45(2):231–250. doi: 10.1016/0012-1606(75)90063-9. [DOI] [PubMed] [Google Scholar]
  9. Fein H. Passing current through recording glass micro-pipette electrodes. IEEE Trans Biomed Eng. 1966 Oct;13(4):211–212. [PubMed] [Google Scholar]
  10. Jaszczak S., Hafez E. S., Moghissi K. S., Kurrie D. A. Concentration gradients of amino acids between the uterine and blastocoelic fluid in the rabbit. Fertil Steril. 1972 Jun;23(6):405–409. [PubMed] [Google Scholar]
  11. Kaplan M. A., Hays L., Hays R. M. Evolution of a facilitated diffusion pathway for amides in the erythrocyte. Am J Physiol. 1974 Jun;226(6):1327–1332. doi: 10.1152/ajplegacy.1974.226.6.1327. [DOI] [PubMed] [Google Scholar]
  12. LEFEVRE P. G., MARSHALL J. K. The atachment of phloretin and analogues to human erythrocytes in connection with inhibition of sugar transport. J Biol Chem. 1959 Nov;234:3022–3026. [PubMed] [Google Scholar]
  13. Levine S., Franki N., Hays R. M. A saturable, vasopressin-sensitive carrier for urea and acetamide in the toad bladder epithelial cell. J Clin Invest. 1973 Aug;52(8):2083–2086. doi: 10.1172/JCI107393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lutz M. D., Cardinal J., Burg M. B. Electrical resistance of renal proximal tubule perfused in vitro. Am J Physiol. 1973 Sep;225(3):729–734. doi: 10.1152/ajplegacy.1973.225.3.729. [DOI] [PubMed] [Google Scholar]
  15. Machen T. E., Erlij D., Wooding F. B. Permeable junctional complexes. The movement of lanthanum across rabbit gallbladder and intestine. J Cell Biol. 1972 Aug;54(2):302–312. doi: 10.1083/jcb.54.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Magnuson T., Demsey A., Stackpole C. W. Characterization of intercellular junctions in the preimplantation mouse embryo by freeze-fracture and thin-section electron microscopy. Dev Biol. 1977 Dec;61(2):252–261. doi: 10.1016/0012-1606(77)90296-2. [DOI] [PubMed] [Google Scholar]
  17. Mandel L. J., Curran P. F. Response of the frog skin to steady-state voltage clamping. I. The shunt pathway. J Gen Physiol. 1972 May;59(5):503–518. doi: 10.1085/jgp.59.5.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Martínez-Palomo A., Erlij D. Structure of tight junctions in epithelia with different permeability. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4487–4491. doi: 10.1073/pnas.72.11.4487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McLaren A., Smith R. Functional test of tight junctions in the mouse blastocyst. Nature. 1977 May 26;267(5609):351–353. doi: 10.1038/267351a0. [DOI] [PubMed] [Google Scholar]
  20. Powers R. D., Borland R. M., Biggers J. D. Amiloride-sensitive rheogenic Na+ transport in rabbit blastocyst. Nature. 1977 Dec 15;270(5638):603–604. doi: 10.1038/270603a0. [DOI] [PubMed] [Google Scholar]
  21. Powers R. D., Tupper J. T. Some electrophysiological and permeability properties of the mouse egg. Dev Biol. 1974 Jun;38(2):320–331. doi: 10.1016/0012-1606(74)90010-4. [DOI] [PubMed] [Google Scholar]
  22. Rabito C. A., Ausiello D. A. Na+-dependent sugar transport in a cultured epithelial cell line from pig kidney. J Membr Biol. 1980;54(1):31–38. doi: 10.1007/BF01875374. [DOI] [PubMed] [Google Scholar]
  23. Romualdez A., Sha'afi R. I., Lange Y., Solomon A. K. Cation transport in dog red cells. J Gen Physiol. 1972 Jul;60(1):46–57. doi: 10.1085/jgp.60.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schultz S. G., Curran P. F. Coupled transport of sodium and organic solutes. Physiol Rev. 1970 Oct;50(4):637–718. doi: 10.1152/physrev.1970.50.4.637. [DOI] [PubMed] [Google Scholar]
  25. Van Blerkom J., Manes C. Development of preimplantation rabbit embryos in vivo and in vitro. Dev Biol. 1974 Sep;40(1):40–51. doi: 10.1016/0012-1606(74)90105-5. [DOI] [PubMed] [Google Scholar]
  26. van Os C. H., de Jong M. D., Slegers J. F. Dimensions of polar pathways through rabbit gallbladder epithelium. The effect of phloretin on nonelectrolyte permeability. J Membr Biol. 1974;15(4):363–382. doi: 10.1007/BF01870095. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES