Skip to main content
British Medical Journal (Clinical Research Ed.) logoLink to British Medical Journal (Clinical Research Ed.)
. 1987 Nov 28;295(6610):1373–1375. doi: 10.1136/bmj.295.6610.1373

Free radicals and Dupuytren's contracture.

G A Murrell 1, M J Francis 1, L Bromley 1
PMCID: PMC1248535  PMID: 2825907

Abstract

The concentration of substrate expressed as hypoxanthine capable of reacting with xanthine oxidase to release superoxide free radicals (O2-) was measured in control and Dupuytren's contracture palmar fascia. In Dupuytren's contracture palmar fascia the concentration of hypoxanthine was six times that of control and was greatest in "nodular" areas. Xanthine oxidase activity was also detected in Dupuytren's contracture palmar fascia. These results suggest a greater potential for hypoxanthine-xanthine oxidase generated oxygen free radical formation in Dupuytren's contracture than in control palmar fascia. Production of free radicals may be an important factor in the pathogenesis of Dupuytren's contracture. The benefit of allopurinol in the management of Dupuytren's contracture and other fibrotic conditions may thus be explained, as allopurinol binds to xanthine oxidase and prevents release of free radicals.

Full text

PDF
1373

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arafa M., Steingold R. F., Noble J. The incidence of Dupuytren's disease in patients with rheumatoid arthritis. J Hand Surg Br. 1984 Jun;9(2):165–166. [PubMed] [Google Scholar]
  2. Brickley-Parsons D., Glimcher M. J., Smith R. J., Albin R., Adams J. P. Biochemical changes in the collagen of the palmar fascia in patients with Dupuytren's disease. J Bone Joint Surg Am. 1981 Jun;63(5):787–797. [PubMed] [Google Scholar]
  3. Del Maestro R. F., Björk J., Arfors K. E. Increase in microvascular permeability induced by enzymatically generated free radicals. I. In vivo study. Microvasc Res. 1981 Nov;22(3):239–254. doi: 10.1016/0026-2862(81)90095-9. [DOI] [PubMed] [Google Scholar]
  4. Evans R. A. The aetiology of Dupuytren's disease. Br J Hosp Med. 1986 Sep;36(3):198–199. [PubMed] [Google Scholar]
  5. Freeman B. A., Rosen G. M., Barber M. J. Superoxide perturbation of the organization of vascular endothelial cell membranes. J Biol Chem. 1986 May 15;261(14):6590–6593. [PubMed] [Google Scholar]
  6. Granger D. N., Rutili G., McCord J. M. Superoxide radicals in feline intestinal ischemia. Gastroenterology. 1981 Jul;81(1):22–29. [PubMed] [Google Scholar]
  7. Hayakawa T., Hashimoto Y., Myokei Y., Aoyama H., Izawa Y. Changes in type of collagen during the development of human post-burn hypertrophic scars. Clin Chim Acta. 1979 Apr 2;93(1):119–125. doi: 10.1016/0009-8981(79)90252-3. [DOI] [PubMed] [Google Scholar]
  8. Jarasch E. D., Grund C., Bruder G., Heid H. W., Keenan T. W., Franke W. W. Localization of xanthine oxidase in mammary-gland epithelium and capillary endothelium. Cell. 1981 Jul;25(1):67–82. doi: 10.1016/0092-8674(81)90232-4. [DOI] [PubMed] [Google Scholar]
  9. Jones C. E., Crowell J. W., Smith E. E. Significance of increased blood uric acid following extensive hemorrhage. Am J Physiol. 1968 Jun;214(6):1374–1377. doi: 10.1152/ajplegacy.1968.214.6.1374. [DOI] [PubMed] [Google Scholar]
  10. Kischer C. W., Speer D. P. Microvascular changes in Dupuytren's contracture. J Hand Surg Am. 1984 Jan;9A(1):58–62. doi: 10.1016/s0363-5023(84)80185-9. [DOI] [PubMed] [Google Scholar]
  11. Krenitsky T. A., Tuttle J. V., Cattau E. L., Jr, Wang P. A comparison of the distribution and electron acceptor specificities of xanthine oxidase and aldehyde oxidase. Comp Biochem Physiol B. 1974 Dec 15;49(4):687–703. doi: 10.1016/0305-0491(74)90256-9. [DOI] [PubMed] [Google Scholar]
  12. Larkin J. G., Frier B. M. Limited joint mobility and Dupuytren's contracture in diabetic, hypertensive, and normal populations. Br Med J (Clin Res Ed) 1986 Jun 7;292(6534):1494–1494. doi: 10.1136/bmj.292.6534.1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rabinowitz J. L., Ostermann L., Jr, Bora F. W., Staeffen J. Lipid composition and de novo lipid biosynthesis of human palmar fat in Dupuytren's disease. Lipids. 1983 May;18(5):371–374. doi: 10.1007/BF02537234. [DOI] [PubMed] [Google Scholar]
  14. Ramboer C. R. A sensitive and nonradioactive assay for serum and tissue xanthine oxidase. J Lab Clin Med. 1969 Nov;74(5):828–835. [PubMed] [Google Scholar]
  15. Simon R. H., Scoggin C. H., Patterson D. Hydrogen peroxide causes the fatal injury to human fibroblasts exposed to oxygen radicals. J Biol Chem. 1981 Jul 25;256(14):7181–7186. [PubMed] [Google Scholar]
  16. Stirpe F., Della Corte E. The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J Biol Chem. 1969 Jul 25;244(14):3855–3863. [PubMed] [Google Scholar]
  17. Sáez J. C., Cifuentes F., Ward P. H., Günther B., Vivaldi E. Tourniquet shock in rats: effects of allopurinol on biochemical changes of the gastrocnemius muscle subjected to ischemia followed by reperfusion. Biochem Med Metab Biol. 1986 Apr;35(2):199–209. doi: 10.1016/0885-4505(86)90075-7. [DOI] [PubMed] [Google Scholar]
  18. Weening R. S., Wever R., Roos D. Quantitative aspects of the production of superoxide radicals by phagocytizing human granulocytes. J Lab Clin Med. 1975 Feb;85(2):245–252. [PubMed] [Google Scholar]

Articles from British Medical Journal (Clinical research ed.) are provided here courtesy of BMJ Publishing Group

RESOURCES