Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1981 May;314:457–480. doi: 10.1113/jphysiol.1981.sp013719

The effects of ATP on the interactions between monovalent cations and the sodium pump in dialysed squid axons

Luis Beaugé 1,2,3, Reinaldo Di Polo 1,2,3
PMCID: PMC1249445  PMID: 6273535

Abstract

1. The efflux of Na in dialysed axons of the squid has been used to monitor the sidedness of the interactions of the Na pump with Na+ ions, K+ ions and ATP. The axons were under conditions such that most of the Na efflux went through the Na pump by means of a complete cycle of ATP hydrolysis.

2. With 310 mm-Ki+, 70 mm-Nai+ and 10 mm-K+ artificial sea water (ASW) more than 97% of the Na efflux was abolished by removal of ATP. The efflux of Na was stimulated by ATP with a K½ of about 200 μm. This is similar to the K½ of 150 μm found for the ATP dependence of a ouabain-sensitive Na,K-ATPase activity in membrane fragments isolated from squid optical nerves.

3. A 100-fold reduction in the ATP concentration (from 3-5 mm to 30-50 μm) increased the apparent affinity of the Na pump for Ko+ about 8-fold. In addition, the maximal rate of Ko+-stimulated Na efflux was reduced by a similar factor. Analogous results were seen in axons dialysed with 310 mm-Ki+ or without Ki+.

4. The relative effectiveness of external monovalent cations as activators of the Na efflux was a function of the ATP concentration inside the axon. With 3-5 mm-ATP the order of effectiveness was K+ > NH4+ > Rb+. With 30-50 μm-ATP the sequence was NH4+ » K+ » Rb+. These results were not affected by the removal of Ki+.

5. When the ATP concentration was 3 mm and the Nai+ concentration 70 mm, the removal of Ki+ produced a slight and reversible increase in the total efflux of Na (15%) and no change in the ATP-dependent Na efflux. When the ATP concentration was reduced to 30-50 μm, or the Nai+ concentration lowered to 5-10 mm, the removal of Ki+ reversibly increased the total and the ATP-dependent efflux of Na. The largest increase in Na efflux was seen when both ATP and Nai+ were simultaneously reduced. The ATP-dependent extra Na efflux resulting from the exclusion of Ki+ was abolished by 10-4 m-ouabain in the sea waters.

6. The increase in the ATP-dependent Na efflux observed in axons dialysed with 0 Ki+ + 10 mm-K+ ASW was not seen in axons perfused with 310 mm-Ki+ + 450 mm-K+ ASW. However, both experimental conditions gave rise to a similar (and small) ATP-independent and ouabain-insensitive efflux of Na. This indicates that the effects on the Na pump of removing Ki+ are not due to the simultaneous membrane depolarization. In addition, it suggests that Ki+ has an inhibitory effect on the Na pump, and that that effect is antagonized by Nai+ and ATP.

7. The present results are consistent with the idea that the same conformation of the Na pump (and Na,K-ATPase) can be reached by interaction with external K+ after phosphorylation and with internal K+ before rephosphorylation. This enzyme conformation produces an enzyme—K complex from which K+ ions are not easily released unless high concentrations of ATP are present. This also stresses a non-phosphorylating regulatory role of ATP.

Full text

PDF
457

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAKER P. F., HODGKIN A. L., SHAW T. I. The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons. J Physiol. 1962 Nov;164:355–374. doi: 10.1113/jphysiol.1962.sp007026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker P. F., Blaustein M. P., Keynes R. D., Manil J., Shaw T. I., Steinhardt R. A. The ouabain-sensitive fluxes of sodium and potassium in squid giant axons. J Physiol. 1969 Feb;200(2):459–496. doi: 10.1113/jphysiol.1969.sp008703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker P. F., Crawford A. C. Mobility and transport of magnesium in squid giant axons. J Physiol. 1972 Dec;227(3):855–874. doi: 10.1113/jphysiol.1972.sp010062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barnola F. V., Villegas R., Camejo G. Tetrodotoxin receptors in plasma membranes isolated from lobster nerve fibers. Biochim Biophys Acta. 1973 Feb 27;298(1):84–94. doi: 10.1016/0005-2736(73)90012-6. [DOI] [PubMed] [Google Scholar]
  5. Beaugé L. A., Del Campillo E. The ATP dependence of a ouabain-sensitive sodium efflux activated by external sodium, potassium and lithium in human red cells. Biochim Biophys Acta. 1976 May 21;433(3):547–554. doi: 10.1016/0005-2736(76)90280-7. [DOI] [PubMed] [Google Scholar]
  6. Beaugé L. A., DiPolo R. Sidedness of the ATP-Na+-K+ interactions with the Na+ pump in squid axons. Biochim Biophys Acta. 1979 Jun 2;553(3):495–500. doi: 10.1016/0005-2736(79)90305-5. [DOI] [PubMed] [Google Scholar]
  7. Beaugé L. A., Glynn I. M. The equilibrium between different conformations of the unphosphorylated sodium pump: effects of ATP and of potassium ions, and their relevance to potassium transport. J Physiol. 1980 Feb;299:367–383. doi: 10.1113/jphysiol.1980.sp013130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Beaugé L. A., Sjodin R. A. An analysis of the influence of membrane potential and metabolic poisoning with azide on the sodium pump in skeletal muscle. J Physiol. 1976 Dec;263(3):383–403. doi: 10.1113/jphysiol.1976.sp011636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Beaugé L. The interaction of lithium ions with the sodium-potassium pump in frog skeletal muscle. J Physiol. 1975 Mar;246(2):397–420. doi: 10.1113/jphysiol.1975.sp010896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brinley F. J., Jr, Mullins L. J. Effects of membrane potential on sodium and potassium fluxes in squid axons. Ann N Y Acad Sci. 1974;242(0):406–433. doi: 10.1111/j.1749-6632.1974.tb19106.x. [DOI] [PubMed] [Google Scholar]
  11. Brinley F. J., Jr, Mullins L. J. Sodium extrusion by internally dialyzed squid axons. J Gen Physiol. 1967 Nov;50(10):2303–2331. doi: 10.1085/jgp.50.10.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Brinley F. J., Jr, Mullins L. J. Sodium fluxes in internally dialyzed squid axons. J Gen Physiol. 1968 Aug;52(2):181–211. doi: 10.1085/jgp.52.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cantley L. C., Jr, Josephson L., Warner R., Yanagisawa M., Lechene C., Guidotti G. Vanadate is a potent (Na,K)-ATPase inhibitor found in ATP derived from muscle. J Biol Chem. 1977 Nov 10;252(21):7421–7423. [PubMed] [Google Scholar]
  14. De Weer P. Axoplasmic free magnesium levels and magnesium extrusion from squid giant axons. J Gen Physiol. 1976 Aug;68(2):159–178. doi: 10.1085/jgp.68.2.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. De Weer P. Effects of intracellular adenosine-5'-diphosphate and orthophosphate on the sensitivity of sodium efflux from squid axon to external sodium and potassium. J Gen Physiol. 1970 Nov;56(5):583–620. doi: 10.1085/jgp.56.5.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. DiPolo R. Calcium influx in internally dialyzed squid giant axons. J Gen Physiol. 1979 Jan;73(1):91–113. doi: 10.1085/jgp.73.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. DiPolo R. Characterization of the ATP-dependent calcium efflux in dialyzed squid giant axons. J Gen Physiol. 1977 Jun;69(6):795–813. doi: 10.1085/jgp.69.6.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dipolo R. Effect of ATP on the calcium efflux in dialyzed squid giant axons. J Gen Physiol. 1974 Oct;64(4):503–517. doi: 10.1085/jgp.64.4.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fischer S., Cellino M., Zambrano F., Zampighi G., Tellez Nagel M., Marcus D., Canessa-Fischer M. The molecular organization of nerve membranesI. Isolation and characterization of plasma membranes from the retinal axons of the squid: an axolemma-rich preparation. Arch Biochem Biophys. 1970 May;138(1):1–15. doi: 10.1016/0003-9861(70)90277-8. [DOI] [PubMed] [Google Scholar]
  20. Garay R. P., Garrahan P. J. The interaction of adenosinetriphosphate and inorganic phosphate with the sodium pump in red cells. J Physiol. 1975 Jul;249(1):51–67. doi: 10.1113/jphysiol.1975.sp011002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Garay R. P., Garrahan P. J. The interaction of sodium and potassium with the sodium pump in red cells. J Physiol. 1973 Jun;231(2):297–325. doi: 10.1113/jphysiol.1973.sp010234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Garrahan P. J., Glynn I. M. Facftors affecting the relative magnitudes of the sodium:potassium and sodium:sodium exchanges catalysed by the sodium pump. J Physiol. 1967 Sep;192(1):189–216. doi: 10.1113/jphysiol.1967.sp008296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Glynn I. M., Chappell J. B. A simple method for the preparation of 32-P-labelled adenosine triphosphate of high specific activity. Biochem J. 1964 Jan;90(1):147–149. doi: 10.1042/bj0900147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Glynn I. M., Hoffman J. F. Nucleotide requirements for sodium-sodium exchange catalysed by the sodium pump in human red cells. J Physiol. 1971 Oct;218(1):239–256. doi: 10.1113/jphysiol.1971.sp009612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Glynn I. M., Karlish S. J. ATP hydrolysis associated with an uncoupled sodium flux through the sodium pump: evidence for allosteric effects of intracellular ATP and extracellular sodium. J Physiol. 1976 Apr;256(2):465–496. doi: 10.1113/jphysiol.1976.sp011333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Glynn I. M., Karlish S. J. The sodium pump. Annu Rev Physiol. 1975;37:13–55. doi: 10.1146/annurev.ph.37.030175.000305. [DOI] [PubMed] [Google Scholar]
  27. Iwahashi H., Kyogoku Y. Direct proton exchange between complementary nucleic acid bases. Nature. 1978 Jan 19;271(5642):277–278. doi: 10.1038/271277a0. [DOI] [PubMed] [Google Scholar]
  28. Jorgensen P. L. Purification and characterization of (Na+, K+)-ATPase. V. Conformational changes in the enzyme Transitions between the Na-form and the K-form studied with tryptic digestion as a tool. Biochim Biophys Acta. 1975 Sep 2;401(3):399–415. doi: 10.1016/0005-2736(75)90239-4. [DOI] [PubMed] [Google Scholar]
  29. Karlish S. J., Beaugé L. A., Glynn I. M. Vanadate inhibits (Na+ + K+)ATPase by blocking a conformational change of the unphosphorylated form. Nature. 1979 Nov 15;282(5736):333–335. doi: 10.1038/282333a0. [DOI] [PubMed] [Google Scholar]
  30. Karlish S. J., Yates D. W., Glynn I. M. Conformational transitions between Na+-bound and K+-bound forms of (Na+ + K+)-ATPase, studied with formycin nucleotides. Biochim Biophys Acta. 1978 Jul 7;525(1):252–264. doi: 10.1016/0005-2744(78)90219-x. [DOI] [PubMed] [Google Scholar]
  31. Karlish S. J., Yates D. W., Glynn I. M. Elementary steps of the (Na+ + K+)-ATPase mechanism, studied with formycin nucleotides. Biochim Biophys Acta. 1978 Jul 7;525(1):230–251. doi: 10.1016/0005-2744(78)90218-8. [DOI] [PubMed] [Google Scholar]
  32. Karlish S. J., Yates D. W. Tryptophan fluorescence of (Na+ + K+)-ATPase as a tool for study of the enzyme mechanism. Biochim Biophys Acta. 1978 Nov 10;527(1):115–130. doi: 10.1016/0005-2744(78)90261-9. [DOI] [PubMed] [Google Scholar]
  33. Lee K. H., Blostein R. Red cell sodium fluxes catalysed by the sodium pump in the absence of K+ and ADP. Nature. 1980 May 29;285(5763):338–339. doi: 10.1038/285338a0. [DOI] [PubMed] [Google Scholar]
  34. Mullins L. J., Brinley F. J. Magnesium influx in dialyzed squid axons. J Membr Biol. 1978 Oct 19;43(2-3):243–250. doi: 10.1007/BF01933481. [DOI] [PubMed] [Google Scholar]
  35. Norby J. G., Jensen J. Binding of ATP to brain microsomal ATPase. Determination of the ATP-binding capacity and the dissociation constant of the enzyme-ATP complex as a function of K+ concentration. Biochim Biophys Acta. 1971 Mar 9;233(1):104–116. doi: 10.1016/0005-2736(71)90362-2. [DOI] [PubMed] [Google Scholar]
  36. Post R. L., Hegyvary C., Kume S. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J Biol Chem. 1972 Oct 25;247(20):6530–6540. [PubMed] [Google Scholar]
  37. Robinson J. D., Flashner M. S. The (Na+ + K+)-activated ATPase. Enzymatic and transport properties. Biochim Biophys Acta. 1979 Aug 17;549(2):145–176. doi: 10.1016/0304-4173(79)90013-2. [DOI] [PubMed] [Google Scholar]
  38. Robinson J. D. Kinetic studies on a brain microsomal adenosine triphosphatase. Evidence suggesting conformational changes. Biochemistry. 1967 Oct;6(10):3250–3258. doi: 10.1021/bi00862a034. [DOI] [PubMed] [Google Scholar]
  39. Sjodin R. A., Beauge L. A. The influence of potassium- and sodium-free solutions on sodium efflux from squid giant axons. J Gen Physiol. 1969 Nov;54(5):664–674. doi: 10.1085/jgp.54.5.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Skou J. C. Effect of ATP on Na:K affinity and catalytic activity of (Na+ plus K+)-activated enzyme system. Ann N Y Acad Sci. 1974;242(0):168–184. doi: 10.1111/j.1749-6632.1974.tb19089.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES