Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1981 Dec;321:31–47. doi: 10.1113/jphysiol.1981.sp013970

Form and function of dorsal horn neurones with axons ascending the dorsal columns in cat.

A G Brown, R E Fyffe
PMCID: PMC1249612  PMID: 7338813

Abstract

1. Extracellular and intracellular recordings were made from dorsal horn neurones sending their axons through the dorsal columns in cats anaesthetized with chloralose and paralysed with gallamine triethiodide. 2. Seventeen neurones were injected with horseradish peroxidase through the intracellular micro-electrode, recovered from the histological material and shown to send their axons into the dorsal columns. 3. The cells had axonal conduction velocities of 30--47 ms-1; excitatory receptive fields that usually showed multireceptive characteristics, often including input from sensitive mechanoreceptors in glabrous skin; a third of the sample had a marked subliminal fringe to the excitatory field; inhibitory fields were usually situated proximal to the excitatory field and contiguous with it. 4. The cells were located in laminae III, IV and medial V. Dorsal cells had restricted dendritic trees that ascended in an essentially cylindrical volume of tissue through lamina II and often into I; cells intermediate in depth had more primary dendrites than the others, usually dorsally directed into lamina II, and a more extensive rostro-caudal development; deep, medial cells had dendritic trees that radiated extensively from the cell body but were restricted to the transverse plane. Two cells had axons that ascended the dorsolateral funiculus for a few mm before re-entering the dorsal horn, crossing it and reaching the dorsal columns. Collaterals were given off the axons in the grey matter, in the dorsolateral funiculus and the dorsal columns. 5. The form and function of the neurones are discussed.

Full text

PDF
31

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angaut-Petit D. The dorsal column system: I. Existence of long ascending postsynaptic fibres in the cat's fasciculus gracilis. Exp Brain Res. 1975 May 22;22(5):457–470. doi: 10.1007/BF00237348. [DOI] [PubMed] [Google Scholar]
  2. Angaut-Petit D. The dorsal column system: II. Functional properties and bulbar relay of the postsynaptic fibres of the cat's fasciculus gracilis. Exp Brain Res. 1975 May 22;22(5):471–493. doi: 10.1007/BF00237349. [DOI] [PubMed] [Google Scholar]
  3. Brown A. G., Franz D. N. Responses of spinocervical tract neurones to natural stimulation of identified cutaneous receptors. Exp Brain Res. 1969;7(3):231–249. doi: 10.1007/BF00239031. [DOI] [PubMed] [Google Scholar]
  4. Brown A. G., Fyffe R. E., Noble R. Projections from Pacinian corpuscles and rapidly adapting mechanoreceptors of glabrous skin to the cat's spinal cord. J Physiol. 1980 Oct;307:385–400. doi: 10.1113/jphysiol.1980.sp013441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown A. G., Fyffe R. E., Noble R., Rose P. K., Snow P. J. The density, distribution and topographical organization of spinocervical tract neurones in the cat. J Physiol. 1980 Mar;300:409–428. doi: 10.1113/jphysiol.1980.sp013169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown A. G., Fyffe R. E., Rose P. K., Snow P. J. Spinal cord collaterals from axons of type II slowly adapting units in the cat. J Physiol. 1981 Jul;316:469–480. doi: 10.1113/jphysiol.1981.sp013801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown A. G., Gordon G., Kay R. H. A study of single axons in the cat's medial lemniscus. J Physiol. 1974 Jan;236(1):225–246. doi: 10.1113/jphysiol.1974.sp010432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown A. G., House C. R., Rose P. K., Snow P. J. The morphology of spinocervical tract neurones in the cat. J Physiol. 1976 Sep;260(3):719–738. doi: 10.1113/jphysiol.1976.sp011540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brown A. G., Rose P. K., Snow P. J. Morphology and organization of axon collaterals from afferent fibres of slowly adapting type I units in cat spinal cord. J Physiol. 1978 Apr;277:15–27. doi: 10.1113/jphysiol.1978.sp012257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brown A. G., Rose P. K., Snow P. J. The morphology of hair follicle afferent fibre collaterals in the spinal cord of the cat. J Physiol. 1977 Nov;272(3):779–797. doi: 10.1113/jphysiol.1977.sp012073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brown A. G., Rose P. K., Snow P. J. The morphology of spinocervical tract neurones revealed by intracellular injection of horseradish peroxidase. J Physiol. 1977 Sep;270(3):747–764. doi: 10.1113/jphysiol.1977.sp011980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bryan R. N., Trevino D. L., Coulter J. D., Willis W. D. Location and somatotopic organization of the cells of origin of the spino-cervical tract. Exp Brain Res. 1973 Apr 30;17(2):177–189. doi: 10.1007/BF00235027. [DOI] [PubMed] [Google Scholar]
  13. Craig A. D., Jr Spinal and medullary input to the lateral cervical nucleus. J Comp Neurol. 1978 Oct 15;181(4):729–743. doi: 10.1002/cne.901810404. [DOI] [PubMed] [Google Scholar]
  14. Hanker J. S., Yates P. E., Metz C. B., Rustioni A. A new specific, sensitive and non-carcinogenic reagent for the demonstration of horseradish peroxidase. Histochem J. 1977 Nov;9(6):789–792. doi: 10.1007/BF01003075. [DOI] [PubMed] [Google Scholar]
  15. Hongo T., Jankowska E., Lundberg A. Post-synaptic excitation and inhibition from primary afferents in neurones of the spinocervical tract. J Physiol. 1968 Dec;199(3):569–592. doi: 10.1113/jphysiol.1968.sp008669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jankowska E., Rastad J., Zarzecki P. Segmental and supraspinal input to cells of origin of non-primary fibres in the feline dorsal columns. J Physiol. 1979 May;290(2):185–200. doi: 10.1113/jphysiol.1979.sp012767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Light A. R., Perl E. R. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol. 1979 Jul 15;186(2):133–150. doi: 10.1002/cne.901860203. [DOI] [PubMed] [Google Scholar]
  18. NATHAN P. W., SMITH M. C. Fasciculi proprii of the spinal cord in man. Brain. 1959 Dec;82:610–668. doi: 10.1093/brain/82.4.610. [DOI] [PubMed] [Google Scholar]
  19. Petit D., Lackner D., Burgess P. R. Mise en évidence de fibres à activité post-synaptique au niveau des colonnes dorsales chez le chat. J Physiol (Paris) 1969;61 (Suppl 2):372–373. [PubMed] [Google Scholar]
  20. REXED B. The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol. 1952 Jun;96(3):414–495. doi: 10.1002/cne.900960303. [DOI] [PubMed] [Google Scholar]
  21. Rastad J., Jankowska E., Westman J. Arborization of initial axon collaterals of spinocervical tract cells stained intracellularly with horseradish peroxidase. Brain Res. 1977 Oct 21;135(1):1–10. doi: 10.1016/0006-8993(77)91047-2. [DOI] [PubMed] [Google Scholar]
  22. Rustioni A. Dorsal column nuclei afferents in the lateral funiculus of the cat: distribution pattern and absence of sprouting after chronic deafferentation. Exp Brain Res. 1975 Jul 11;23(1):1–12. doi: 10.1007/BF00238725. [DOI] [PubMed] [Google Scholar]
  23. Rustioni A., Kaufman A. B. Identification of cells or origin of non-primary afferents to the dorsal column nuclei of the cat. Exp Brain Res. 1977 Jan 18;27(1):1–14. doi: 10.1007/BF00234821. [DOI] [PubMed] [Google Scholar]
  24. Rustioni A. Non-primary afferents to the cuneate nucleus in the brachial dorsal funiculus of the cat. Brain Res. 1974 Jul 26;75(2):247–259. doi: 10.1016/0006-8993(74)90745-8. [DOI] [PubMed] [Google Scholar]
  25. Rustioni A. Non-primary afferents to the nucleus gracilis from the lumbar cord of the ct. Brain Res. 1973 Mar 15;51:81–95. doi: 10.1016/0006-8993(73)90366-1. [DOI] [PubMed] [Google Scholar]
  26. Snow P. J., Rose P. K., Brown A. G. Tracing axons and axon collaterals of spinal neurons using intracellular injection of horseradish peroxidase. Science. 1976 Jan 23;191(4224):312–313. doi: 10.1126/science.54936. [DOI] [PubMed] [Google Scholar]
  27. Uddenberg N. Differential localization in dorsal funiculus of fibres originating from different receptors. Exp Brain Res. 1968;4(4):367–376. doi: 10.1007/BF00235701. [DOI] [PubMed] [Google Scholar]
  28. Uddenberg N. Functional organization of long, second-order afferents in the dorsal funiculus. Exp Brain Res. 1968;4(4):377–382. doi: 10.1007/BF00235702. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES