Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1981 Dec;321:163–174. doi: 10.1113/jphysiol.1981.sp013977

Surface potentials and sodium entry in frog skin epithelium.

D Benos, R Latorre, J Reyes
PMCID: PMC1249619  PMID: 6978394

Abstract

1. The effects which alterations in the surface potential of the apical membrane of isolated Rana catesbeiana skin have on Na entry were examined. 2. Changes in the external ionic strength have little effect upon the rate of Na transport across the frog skin epithelium. 3. Uranyl ion (UO2(2+), 2.5 mM) induces a +145 mV change in the surface potential of phosphatidylserine monolayers, and a +60mV change in the surface potential of monolayers made from phosphatidylcholine. 4. UO2(2+) inhibits the short-circuit current (Isc) by a maximum of 20% in R. catesbeiana skin, while stimulating Isc by 40% in R. temporaria skin. Neither Isc stimulation nor inhibition by UO2(2+) can be seen in the presence of 10(-4) M-amiloride. 5. From points 1 and 2 above, we conclude that the surface charge density in the neighbourhood of the Na-selective entry site located in the apical membrane is small (greater than 1e-/600 A2). The results obtained using UO2(2+) suggest that Na entry is not affected by changes in the membrane surface potential.

Full text

PDF
163

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apell H. J., Bamberg E., Läuger P. Effects of surface charge on the conductance of the gramicidin channel. Biochim Biophys Acta. 1979 Apr 19;552(3):369–378. doi: 10.1016/0005-2736(79)90181-0. [DOI] [PubMed] [Google Scholar]
  2. Begenisich T. Magnitude and location of surface charges on Myxicola giant axons. J Gen Physiol. 1975 Jul;66(1):47–65. doi: 10.1085/jgp.66.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benos D. J., Mandel L. J., Balaban R. S. On the mechanism of the amiloride-sodium entry site interaction in anuran skin epithelia. J Gen Physiol. 1979 Mar;73(3):307–326. doi: 10.1085/jgp.73.3.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benos D. J., Mandel L. J., Simon S. A. Cationic selectivity and competition at the sodium entry site in frog skin. J Gen Physiol. 1980 Aug;76(2):233–247. doi: 10.1085/jgp.76.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benos D. J., Simon S. A., Mandel L. J., Cala P. M. Effect of amiloride and some of its analogues of cation transport in isolated frog skin and thin lipid membranes. J Gen Physiol. 1976 Jul;68(1):43–63. doi: 10.1085/jgp.68.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Biber T. U., Sanders M. L. Influence of transepithelial potential difference on the sodium uptake at the outer surface of the isolated frog skin. J Gen Physiol. 1973 May;61(5):529–551. doi: 10.1085/jgp.61.5.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Candia O. A., Reinach P. S. Sodium washout kinetics across inner and outer barriers of the isolated frog skin epithelium. Biochim Biophys Acta. 1977 Aug 1;468(3):341–352. doi: 10.1016/0005-2736(77)90286-3. [DOI] [PubMed] [Google Scholar]
  8. Curran P. F. Effect of silver ion on permeability properties of frog skin. Biochim Biophys Acta. 1972 Oct 23;288(1):90–97. doi: 10.1016/0005-2736(72)90225-8. [DOI] [PubMed] [Google Scholar]
  9. D'Arrigo J. S. Structural characteristics of the saxitoxin receptor on nerve. J Membr Biol. 1976 Nov 22;29(3):231–242. doi: 10.1007/BF01868963. [DOI] [PubMed] [Google Scholar]
  10. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FRANKENHAEUSER B. Sodium permeability in toad nerve and in squid nerve. J Physiol. 1960 Jun;152:159–166. doi: 10.1113/jphysiol.1960.sp006477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Finkelstein A., Holz R. Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. Membranes. 1973;2:377–408. [PubMed] [Google Scholar]
  13. Fuchs W., Larsen E. H., Lindemann B. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. J Physiol. 1977 May;267(1):137–166. doi: 10.1113/jphysiol.1977.sp011805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goudeau H., Wietzerbin J., Gary-Bobo C. M. Effects of mucosal lanthanum on electrical parameters of isolated frog skin. Mechanism of action. Pflugers Arch. 1979 Feb 14;379(1):71–80. doi: 10.1007/BF00622907. [DOI] [PubMed] [Google Scholar]
  15. Grinstein S., Candia O., Erlij D. Nonhormonal mechanisms for the regulation of transepithelial sodium transport: the roles of surface potential and cell calcium. J Membr Biol. 1978;40(Spec No):261–280. doi: 10.1007/BF02026010. [DOI] [PubMed] [Google Scholar]
  16. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Helman S. I., Fisher R. S. Microelectrode studies of the active Na transport pathway of frog skin. J Gen Physiol. 1977 May;69(5):571–604. doi: 10.1085/jgp.69.5.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hille B., Woodhull A. M., Shapiro B. I. Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. Philos Trans R Soc Lond B Biol Sci. 1975 Jun 10;270(908):301–318. doi: 10.1098/rstb.1975.0011. [DOI] [PubMed] [Google Scholar]
  19. Mandel L. J., Curran P. F. Response of the frog skin to steady-state voltage clamping. II. The active pathway. J Gen Physiol. 1973 Jul;62(1):1–24. doi: 10.1085/jgp.62.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mandel L. J. Effects of pH, Ca, ADH, and theophylline on kinetics of Na entry in frog skin. Am J Physiol. 1978 Jul;235(1):C35–C48. doi: 10.1152/ajpcell.1978.235.1.C35. [DOI] [PubMed] [Google Scholar]
  21. Martinez-Palomo A., Erlij D., Bracho H. Localization of permeability barriers in the frog skin epithelium. J Cell Biol. 1971 Aug;50(2):277–287. doi: 10.1083/jcb.50.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McLaughlin S. G., Szabo G., Eisenman G. Divalent ions and the surface potential of charged phospholipid membranes. J Gen Physiol. 1971 Dec;58(6):667–687. doi: 10.1085/jgp.58.6.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McLaughlin S., Harary H. The hydrophobic adsorption of charged molecules to bilayer membranes: a test of the applicability of the stern equation. Biochemistry. 1976 May 4;15(9):1941–1948. doi: 10.1021/bi00654a023. [DOI] [PubMed] [Google Scholar]
  24. Muller R. U., Finkelstein A. The effect of surface charge on the voltage-dependent conductance induced in thin lipid membranes by monazomycin. J Gen Physiol. 1972 Sep;60(3):285–306. doi: 10.1085/jgp.60.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ohmori H., Yoshii M. Surface potential reflected in both gating and permeation mechanisms of sodium and calcium channels of the tunicate egg cell membrane. J Physiol. 1977 May;267(2):429–463. doi: 10.1113/jphysiol.1977.sp011821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reyes J., Latorre R. Effect of the anesthetics benzyl alcohol and chloroform on bilayers made from monolayers. Biophys J. 1979 Nov;28(2):259–279. doi: 10.1016/S0006-3495(79)85175-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. SCHULTZ S. G., ZALUSKY R. ION TRANSPORT IN ISOLATED RABBIT ILEUM. I. SHORT-CIRCUIT CURRENT AND NA FLUXES. J Gen Physiol. 1964 Jan;47:567–584. doi: 10.1085/jgp.47.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. SKOU J. C., ZERAHN K. Investigations on the effect of some local anaesthetics and other amines on the active transport of sodium through the isolated short-circuited frog skin. Biochim Biophys Acta. 1959 Oct;35:324–333. doi: 10.1016/0006-3002(59)90381-6. [DOI] [PubMed] [Google Scholar]
  29. Watlington C. O., Harlan W. R., Jr Ion transport and lipid content of isolated frog skin. Am J Physiol. 1969 Oct;217(4):1004–1008. doi: 10.1152/ajplegacy.1969.217.4.1004. [DOI] [PubMed] [Google Scholar]
  30. Wietzerbin J., Goudeau H., Gary-Bobo C. M. Influence of membrane polarization and hormonal stimulation on the action of lanthanum on frog skin sodium permeability. Pflugers Arch. 1977 Aug 29;370(2):145–153. doi: 10.1007/BF00581688. [DOI] [PubMed] [Google Scholar]
  31. Zeiski W. The stimulation of Na+ uptake in frog skin by uranyl ions. Biochim Biophys Acta. 1978 May 18;509(2):218–229. doi: 10.1016/0005-2736(78)90042-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES