Abstract
1. Pairs of frog sartorius muscles were stimulated for 2 sec at 0 degrees C, after 1 sec of isometric contraction, were released at a constant velocity. The total excess heat (shortening heat) and work associated with the release were determined by comparison with isometric control tetani. 2. Shortening heat and work production were non-linearly related to the distance shortened. There was proportionally more energy liberation for smaller releases. 3. The dependence of shortening heat on muscle length was investigated within the sarcomere length range 2.1--2.6 micrometer (as measured in resting muscle) and was found to be similar to that of isometric tension. 4. A simple model in which heat and work are produced in a two-state cycle can describe these and previous results concerning the energetics of rapidly shortening muscle.
Full text
PDF![411](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4d/1249635/82acbe6bc5f3/jphysiol00728-0408.png)
![412](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4d/1249635/e7f2f13e0ad7/jphysiol00728-0409.png)
![413](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4d/1249635/96d56622cec6/jphysiol00728-0410.png)
![414](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4d/1249635/16b7dde55687/jphysiol00728-0411.png)
![415](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4d/1249635/5bede3098f64/jphysiol00728-0412.png)
![416](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4d/1249635/9b7075692fc0/jphysiol00728-0413.png)
![417](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4d/1249635/d963055d49dc/jphysiol00728-0414.png)
![418](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4d/1249635/43b8f7b40672/jphysiol00728-0415.png)
![419](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4d/1249635/1dde5728add9/jphysiol00728-0416.png)
![420](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4d/1249635/218a618576b5/jphysiol00728-0417.png)
![421](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4d/1249635/121804b9daff/jphysiol00728-0418.png)
![422](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef4d/1249635/d4b73f5b25c4/jphysiol00728-0419.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABBOTT B. C. The heat production associated with the maintenance of a prolonged contraction and the extra heat produced during large shortening. J Physiol. 1951 Feb;112(3-4):438–445. doi: 10.1113/jphysiol.1951.sp004541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aubert X., Gilbert S. H. Variation in the isometric maintenance heat rate with muscle length near that of maximum tension in frog striated muscle. J Physiol. 1980 Jun;303:1–8. doi: 10.1113/jphysiol.1980.sp013265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curtin N. A., Woledge R. C. Energy changes and muscular contraction. Physiol Rev. 1978 Jul;58(3):690–761. doi: 10.1152/physrev.1978.58.3.690. [DOI] [PubMed] [Google Scholar]
- Ebashi S., Endo M., Otsuki I. Control of muscle contraction. Q Rev Biophys. 1969 Nov;2(4):351–384. doi: 10.1017/s0033583500001190. [DOI] [PubMed] [Google Scholar]
- Edman K. A. Mechanical deactivation induced by active shortening in isolated muscle fibres of the frog. J Physiol. 1975 Mar;246(1):255–275. doi: 10.1113/jphysiol.1975.sp010889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferenczi M. A., Homsher E., Trentham D. R., Weeds A. G. Preparation and characterization of frog muscle myosin subfragment 1 and actin. Biochem J. 1978 Apr 1;171(1):155–163. doi: 10.1042/bj1710155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ford L. E., Huxley A. F., Simmons R. M. Tension responses to sudden length change in stimulated frog muscle fibres near slack length. J Physiol. 1977 Jul;269(2):441–515. doi: 10.1113/jphysiol.1977.sp011911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbert S. H., Matsumoto Y. A reexamination of the thermoelastic effect in active striated muscle. J Gen Physiol. 1976 Jul;68(1):81–94. doi: 10.1085/jgp.68.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HILL A. V. THE EFFECT OF LOAD ON THE HEAT OF SHORTENING OF MUSCLE. Proc R Soc Lond B Biol Sci. 1964 Jan 14;159:297–318. doi: 10.1098/rspb.1964.0004. [DOI] [PubMed] [Google Scholar]
- HILL A. V. The instantaneous elasticity of active muscle. Proc R Soc Lond B Biol Sci. 1953 Apr 17;141(903):161–178. doi: 10.1098/rspb.1953.0033. [DOI] [PubMed] [Google Scholar]
- HILL A. V. The thermodynamics of elasticity in resting striated muscle. Proc R Soc Lond B Biol Sci. 1952 Jul 10;139(897):464–passim. doi: 10.1098/rspb.1952.0024. [DOI] [PubMed] [Google Scholar]
- HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
- Homsher E., Irving M., Wallner A. High-energy phosphate metabolism and energy liberation associated with rapid shortening in frog skeletal muscle. J Physiol. 1981 Dec;321:423–436. doi: 10.1113/jphysiol.1981.sp013994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Homsher E., Mommaerts W. F., Ricchiuti N. V., Wallner A. Activation heat, activation metabolism and tension-related heat in frog semitendinosus muscles. J Physiol. 1972 Feb;220(3):601–625. doi: 10.1113/jphysiol.1972.sp009725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Homsher E., Rall J. A. Energetics of shortening muscles in twitches and tetanic contractions. I. A reinvestigation of Hill's concept of the shortening heat. J Gen Physiol. 1973 Dec;62(6):663–676. doi: 10.1085/jgp.62.6.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Irving M., Woledge R. C. Dependence of shortening heat on distance shortened in frog skeletal muscle [proceedings]. J Physiol. 1979 Jul;292:76P–77P. [PubMed] [Google Scholar]
- Irving M., Woledge R. C. The energy liberation of frog skeletal muscle in tetanic contractions containing two periods of shortening. J Physiol. 1981 Dec;321:401–410. doi: 10.1113/jphysiol.1981.sp013992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Irving M., Woledge R. C., Yamada K. The heat produced by frog muscle in a series of contractions with shortening. J Physiol. 1979 Aug;293:103–118. doi: 10.1113/jphysiol.1979.sp012880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lebacq J. La chaleur de raccourcissement musculaire à différentes longueurs du sarcomère. J Physiol (Paris) 1972;65(Suppl):440A–440A. [PubMed] [Google Scholar]
- Lymn R. W., Taylor E. W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry. 1971 Dec 7;10(25):4617–4624. doi: 10.1021/bi00801a004. [DOI] [PubMed] [Google Scholar]
- Rall J. A., Homsher E., Wallner A., Mommaerts W. F. A temporal dissociation of energy liberation and high energy phosphate splitting during shortening in frog skeletal muscles. J Gen Physiol. 1976 Jul;68(1):13–27. doi: 10.1085/jgp.68.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith I. C. Energetics of activation in frog and toad muscle. J Physiol. 1972 Feb;220(3):583–599. doi: 10.1113/jphysiol.1972.sp009724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOLEDGE R. C. The thermoelastic effect of change of tension in active muscle. J Physiol. 1961 Jan;155:187–208. doi: 10.1113/jphysiol.1961.sp006622. [DOI] [PMC free article] [PubMed] [Google Scholar]