Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1982 Jan;322:181–195. doi: 10.1113/jphysiol.1982.sp014031

Quantal analysis of a decremental response at hair cell-afferent fibre synapses in the goldfish sacculus.

T Furukawa, M Kuno, S Matsuura
PMCID: PMC1249664  PMID: 6279828

Abstract

1. On application of a step decrement in the sound intensity, the amplitude of excitatory post-synaptic potentials (e.p.s.p.s) recorded intracellularly from large afferent auditory fibres in goldfish's sacculus showed a decremental response in which the amplitude of the e.p.s.p.s was temporarily reduced to a very low level, but soon returned to a new steady level appropriate to the decreased sound intensity. This response seems to underlie the temporary reduction in the rate of afferent discharge observed in the mammalian cochlea upon cessation of sound or upon reduction of its intensity 2. A statistical analysis revealed that reduction in the size of the mean quantal content (m) during the decremental response was associated with reduction in the size of binomial population (n), but not that of the probability (p) of any one of the available quanta actually being used. 3. The temporary reduction in the size of n during the decremental responses can be explained if it is assumed that replenishment to vacant release sites was channelled to high threshold sites and that the low threshold sites were bypassed. The mechanism underlying this special type of replenishment is discussed in relation to the ultrastructural features of presynaptic sites in the hair cell.

Full text

PDF
181

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOYD I. A., MARTIN A. R. The end-plate potential in mammalian muscle. J Physiol. 1956 Apr 27;132(1):74–91. doi: 10.1113/jphysiol.1956.sp005503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bagger-Sjöbäck D., Gulley R. L. Synaptic structures in the type II hair cell in the vestibular system of the guinea pig. A freeze-fracture and TEM study. Acta Otolaryngol. 1979;88(5-6):401–411. doi: 10.3109/00016487909137185. [DOI] [PubMed] [Google Scholar]
  3. Bennett M. R., Fisher C. The effects of calcium ions on the binomial parameters that control acetylcholine release during trains of nerve impulses at amphibian neuromuscular synapses. J Physiol. 1977 Oct;271(3):673–698. doi: 10.1113/jphysiol.1977.sp012020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett M. R., Florin T. A statistical analysis of the release of acetylcholine at newly formed synapses in striated muscle. J Physiol. 1974 Apr;238(1):93–107. doi: 10.1113/jphysiol.1974.sp010512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benshalom G., Flock A. Ultrastructure of synapses in the lateral line canal organ. Acta Otolaryngol. 1980 Sep-Oct;90(3-4):161–174. doi: 10.3109/00016488009131712. [DOI] [PubMed] [Google Scholar]
  6. Brown T. H., Perkel D. H., Feldman M. W. Evoked neurotransmitter release: statistical effects of nonuniformity and nonstationarity. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2913–2917. doi: 10.1073/pnas.73.8.2913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bunt A. H. Enzymatic digestion of synaptic ribbons in amphibian retinal photoreceptors. Brain Res. 1971 Feb 5;25(3):571–577. doi: 10.1016/0006-8993(71)90461-6. [DOI] [PubMed] [Google Scholar]
  8. Cragg B. G. Structural changes in naive retinal synapses detectable within minutes of first exposure to daylight. Brain Res. 1969 Sep;15(1):79–96. doi: 10.1016/0006-8993(69)90311-4. [DOI] [PubMed] [Google Scholar]
  9. DAVIS H. Biophysics and physiology of the inner ear. Physiol Rev. 1957 Jan;37(1):1–49. doi: 10.1152/physrev.1957.37.1.1. [DOI] [PubMed] [Google Scholar]
  10. DEL CASTILLO J., KATZ B. Quantal components of the end-plate potential. J Physiol. 1954 Jun 28;124(3):560–573. doi: 10.1113/jphysiol.1954.sp005129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DUDEL J., KUFFLER S. W. The quantal nature of transmission and spontaneous miniature potentials at the crayfish neuromuscular junction. J Physiol. 1961 Mar;155:514–529. doi: 10.1113/jphysiol.1961.sp006644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Furukawa T., Hayashida Y., Matsuura S. Quantal analysis of the size of excitatory post-synaptic potentials at synapses between hair cells and afferent nerve fibres in goldfish. J Physiol. 1978 Mar;276:211–226. doi: 10.1113/jphysiol.1978.sp012229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Furukawa T., Ishii Y. Neurophysiological studies on hearing in goldfish. J Neurophysiol. 1967 Nov;30(6):1377–1403. doi: 10.1152/jn.1967.30.6.1377. [DOI] [PubMed] [Google Scholar]
  14. Furukawa T., Matsuura S. Adaptive rundown of excitatory post-synaptic potentials at synapses between hair cells and eight nerve fibres in the goldfish. J Physiol. 1978 Mar;276:193–209. doi: 10.1113/jphysiol.1978.sp012228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Glavinović M. I. Change of statistical parameters of transmitter release during various kinetic tests in unparalysed voltage-clamped rat diaphragm. J Physiol. 1979 May;290(2):481–497. doi: 10.1113/jphysiol.1979.sp012785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gray E. G., Pease H. L. On understanding the organisation of the retinal receptor synapses. Brain Res. 1971 Dec 10;35(1):1–15. doi: 10.1016/0006-8993(71)90591-9. [DOI] [PubMed] [Google Scholar]
  17. Gulley R. L., Reese T. S. Freeze-fracture studies on the synapses in the organ of Corti. J Comp Neurol. 1977 Feb 15;171(4):517–543. doi: 10.1002/cne.901710407. [DOI] [PubMed] [Google Scholar]
  18. Hama K. A study on the fine structure of the saccular macula of the gold fish. Z Zellforsch Mikrosk Anat. 1969;94(2):155–171. doi: 10.1007/BF00339353. [DOI] [PubMed] [Google Scholar]
  19. Hama K. Fine structure of the afferent synapse and gap junctions on the sensory hair cell in the saccular macula of goldfish: a freeze-fracture study. J Neurocytol. 1980 Dec;9(6):845–860. doi: 10.1007/BF01205023. [DOI] [PubMed] [Google Scholar]
  20. Hama K., Saito K. Fine structure of the afferent synapse of the hair cells in the saccular macula of the goldfish, with special reference to the anastomosing tubules. J Neurocytol. 1977 Aug;6(4):361–373. doi: 10.1007/BF01178223. [DOI] [PubMed] [Google Scholar]
  21. Harris D. M., Dallos P. Forward masking of auditory nerve fiber responses. J Neurophysiol. 1979 Jul;42(4):1083–1107. doi: 10.1152/jn.1979.42.4.1083. [DOI] [PubMed] [Google Scholar]
  22. Hudspeth A. J., Corey D. P. Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2407–2411. doi: 10.1073/pnas.74.6.2407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Johnson E. W., Wernig A. The binomial nature of transmitter release at the crayfish neuromuscular junction. J Physiol. 1971 Nov;218(3):757–767. doi: 10.1113/jphysiol.1971.sp009642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. KUNO M. QUANTAL COMPONENTS OF EXCITATORY SYNAPTIC POTENTIALS IN SPINAL MOTONEURONES. J Physiol. 1964 Dec;175:81–99. doi: 10.1113/jphysiol.1964.sp007504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kiang N. Y., Moxon E. C., Levine R. A. Auditory-nerve activity in cats with normal and abnormal cochleas. In: Sensorineural hearing loss. Ciba Found Symp. 1970:241–273. doi: 10.1002/9780470719756.ch15. [DOI] [PubMed] [Google Scholar]
  26. LADMAN A. J. The fine structure of the rod-bipolar cell synapse in the retina of the albino rat. J Biophys Biochem Cytol. 1958 Jul 25;4(4):459–466. doi: 10.1083/jcb.4.4.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. MARTIN A. R. A further study of the statistical composition on the end-plate potential. J Physiol. 1955 Oct 28;130(1):114–122. doi: 10.1113/jphysiol.1955.sp005397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. MARTIN A. R., PILAR G. QUANTAL COMPONENTS OF THE SYNAPTIC POTENTIAL IN THE CILIARY GANGLION OF THE CHICK. J Physiol. 1964 Dec;175:1–16. doi: 10.1113/jphysiol.1964.sp007499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McLachlan E. M. An analysis of the release of acetylcholine from preganglionic nerve terminals. J Physiol. 1975 Feb;245(2):447–466. doi: 10.1113/jphysiol.1975.sp010855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Miyamoto M. D. Binomial analysis of quantal transmitter release at glycerol treated frog neuromuscular junctions. J Physiol. 1975 Aug;250(1):121–142. doi: 10.1113/jphysiol.1975.sp011045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mulroy M. J., Altmann D. W., Weiss T. F., Peake W. T. Intracellular electric responses to sound in a vertebrate cochlea. Nature. 1974 May 31;249(456):482–485. doi: 10.1038/249482a0. [DOI] [PubMed] [Google Scholar]
  32. Raviola E., Gilula N. B. Intramembrane organization of specialized contacts in the outer plexiform layer of the retina. A freeze-fracture study in monkeys and rabbits. J Cell Biol. 1975 Apr;65(1):192–222. doi: 10.1083/jcb.65.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Russell I. J., Sellick P. M. Intracellular studies of hair cells in the mammalian cochlea. J Physiol. 1978 Nov;284:261–290. doi: 10.1113/jphysiol.1978.sp012540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schroeder M. R., Hall J. L. Model for mechanical to neural transduction in the auditory receptor. J Acoust Soc Am. 1974 May;55(5):1055–1060. doi: 10.1121/1.1914647. [DOI] [PubMed] [Google Scholar]
  35. Smith R. L., Zwislocki J. J. Short-term adaptation and incremental responses of single auditory-nerve fibers. Biol Cybern. 1975;17(3):169–182. doi: 10.1007/BF00364166. [DOI] [PubMed] [Google Scholar]
  36. Wernig A. Changes in statistical parameters during facilitation at the crayfish neuromuscular junction. J Physiol. 1972 Nov;226(3):751–759. doi: 10.1113/jphysiol.1972.sp010007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zucker R. S. Changes in the statistics of transmitter release during facilitation. J Physiol. 1973 Mar;229(3):787–810. doi: 10.1113/jphysiol.1973.sp010167. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES