Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2025 Sep 5;81(Pt 10):906–911. doi: 10.1107/S2056989025007467

Synthesis, crystal structure, Hirshfeld surface analysis, and energy framework of bis­{3-(4-bromo­phen­yl)-5-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-4H-1,2,4-triazol-4-ido}nickel(II) methanol disolvate and comparison with its chloro-substituted analogue

Kateryna Znovjyak a, Sergiu Shova b, Sergiy O Nikitin c, Yurii S Moroz a, Oksana Tananaiko a, Sergey O Malinkin a, Maksym Seredyuk a,*
Editor: F F Ferreirad
PMCID: PMC12498045  PMID: 41059324

The title compound, a neutral bis­{3-(4-bromo­phen­yl)-5-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-4H-1,2,4-triazol-4-ido}nickel(II) methanol disolvate, exhibits a distorted pseudo­octa­hedral coordination environment around the metal ion. Due to the conical geometry and polar characteristics the mol­ecules stack in one-dimensional columns that are connected by weak hydrogen bonds to form layers. These layers are arranged in a three-dimensional lattice without inter­layer inter­actions closer than van der Waals distances.

Keywords: crystal structure, nickel(II) complexes, neutral complexes

Abstract

The unit cell of the title compound, [Ni(C16H10BrN6)2]·2CH3OH, contains a neutral complex and two methanol mol­ecules. The NiII ion adopts a pseudo­octa­hedral geometry, coordinated by two tridentate ligands via pyrazole, pyridine, and triazole N atoms. The average Ni—N bond length is 2.097 (4) Å. In the crystal, mol­ecules form supra­molecular chains through weak C–H⋯π inter­actions and further assemble into diperiodic layers via C—H⋯N/C inter­actions. Hirshfeld surface analysis shows H⋯H (32.1%), H⋯C/C⋯H (27.3%), H⋯N/N⋯H (14.9%), and H⋯Br/Br⋯H (14.6%) contacts. Inter­action energies were evaluated using HF/3–21 G energy frameworks analysis. Structural parameters were compared to those of the chloro-containing analogue, and the effect of substituent variation was discussed.

1. Chemical context

A significant category of coordination compounds comprises 3d-metal complexes coordinated with tridentate bis­azole­pyridine ligands (Halcrow et al., 2019; Suryadevara et al., 2022), which have been employed in diverse applications including catalysis (Xing et al., 2014; Wei et al., 2015) and mol­ecular magnetism (Suryadevara et al., 2022). Recently, we reported an NiII complex incorporating an asymmetric deprotonated chloro-substituted ligand, 3-(4-chloro­phen­yl)-5-[6-pyrazol­yl(2-pyrid­yl)]-1H-1,2,4-triazole (KULRIW; Znovjyak et al., 2024).1.

In this study, we describe the synthesis and crystal structure determination of a new complex (1) featuring a bromo-substituted ligand, 3-(4-bromo­phen­yl)-5-(6-pyrazol­yl(2-pyrid­yl))-1H-1,2,4-triazole. Comprehensive structural analyses were performed and the resulting calculated parameters were compared with those of the chloro-derivative (2).

2. Structural commentary

The two tridentate ligands span meridional and perpendicular coordination sites on the octa­hedron, forming a mol­ecule with a compact coordination part and pending diverging 4-bromo­phenyl groups. The pendant group is tilted by 26.6 (2)° relative to the nearly planar pyrazole-pyridine-triazole (pz-py-trz) fragment (r.m.s. deviation = 0.074 Å). A methanol mol­ecule forms an O—H⋯N5 hydrogen bond with the triazole ring of the ligand (Table 1, Fig. 1). The central Ni ion adopts a distorted octa­hedral N6 coordination sphere, formed by nitro­gen atoms from two tridentate ligands, with an average Ni—N bond length of 2.097 (4) Å. The [NiN6] coordination polyhedron has a volume of 11.616 Å3. The trigonal distortion parameters are Σ = 119.3° (Σ = Σ112(|90 – φi|), where φi is the N—Ni—N′ angle; Drew et al., 1995) and Θ = 386.9° (Θ = Σ124(|60 – θi|), where θi is the angle from superposed opposite octa­hedral faces; Chang et al., 1990), indicating deviation from ideal octa­hedral geometry (Σ = Θ = 0). The continuous shape measure [CShM(Oh)] relative to ideal octa­hedral symmetry is 3.702 (Kershaw Cook et al., 2015). Compared to 2, compound 1 shows marginally higher distortion indices, reflecting the effect of varying pendant substituents (Table 2).

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.35 3.269 (8) 162
C5—H5⋯O1i 0.95 2.48 3.413 (7) 167
C1—H1⋯N6ii 0.95 2.30 3.238 (6) 171
C7—H7⋯C1iii 0.95 2.71 3.615 (7) 161
O1—H1A⋯N5 0.73 (6) 2.08 (6) 2.798 (6) 168 (6)
C2—H2⋯Cgiv 0.95 2.69 3.542 (6) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 1.

Figure 1

The mol­ecular structure in the asymmetric unit of the title compound and contact atoms with displacement ellipsoids drawn at the 50% probability level. The strong O—H⋯N (red) and weak C—H⋯N/C/O/Cg (cyan) hydrogen bonds are shown with the nearest neighbors. Symmetry codes: (i) 1 − x, 1 + y, Inline graphic − z; (ii) Inline graphic + x, Inline graphic + y, Inline graphic − z; (iii) Inline graphic + x, −Inline graphic + y, Inline graphic − z.

Table 2. Computed distortion indices for the title compound and for similar complexes reported in the literature.

CSD refcode <M—N> (Å) Σ (°) Θ (°) CShM(Oh)
1 2.097 119.3 386.9 3.70
2_(KULRIW) 2.095 119.4 387.3 3.71
YOCFAZ 2.088a 120.8a 397.6a 3.65a
ZOCKOT 2.086 121.0 375.9 3.78
ZOTVIP 2.110 124.9 382.4 3.55

Note: (a) averaged value.

3. Supra­molecular features

The title compound exhibits a packing similar to 2, with adjacent mol­ecules inter­locked and inter­acting via weak off-center non-perpendicular (73.0° angle) C—H(pz)⋯π(ph) contact between the pyrazole and phenyl groups [H2/C2⋯Cg(ph) = 2.686 (1)/3.542 (6) Å]. The formed one-dimensional chains extend along the b-axis direction with a periodicity of 10.1729 (4) Å (Fig. 2a), and are linked into corrugated layers in the ab plane by weak C—H(pz, py)⋯N/C(pz, trz) inter­actions [3.238 (6)–3.746 (7) Å; Fig. 2b]. The layers stack without inter­actions below the van der Waals radii, while methanol mol­ecules occupy the inter­layer voids and connect them through weak O⋯H—C(pz,py) inter­actions (Fig. 2c). Table 1 provides a summary of all inter­molecular inter­actions. Compared to 2, the overall packing remains similar, with minor differences in the values of inter­molecular contacts, which can be compared using Hirshfeld surface analysis.

Figure 2.

Figure 2

(a) A fragment of a monoperiodic supra­molecular column formed by stacking of mol­ecules along the b axis, with C—H⋯Cg contacts indicated by red dashed lines; (b) supra­molecular diperiodic layers formed by stacking supra­molecular columns in the ab plane. The C—H⋯N/C contacts between chains are indicated by black dashed cylinders. For a better representation, each column has a different color; (c) stacking of the diperiodic layers along the c axis with the methanol mol­ecules in the voids.

4. Hirshfeld surface and two-dimensional fingerprint plots

A Hirshfeld surface analysis was conducted and two-dimensional fingerprint plots were generated using CrystalExplorer 21.5 (Spackman et al., 2021), with a standard resolution for the three-dimensional dnorm surfaces plotted over a fixed color scale ranging from −0.6304 (red) to 1.6516 (blue) a.u. Red spots indicate short contacts and negative dnorm values on the surface, which correspond to the inter­actions described above. A projection of dnorm mapped over the Hirshfeld surfaces is presented in Fig. 3a. The two-dimensional fingerprint plots, along with their relative contributions to the Hirshfeld surface mapped over dnorm, are shown in Fig. 4a. H⋯H inter­actions account for the largest contribution to the overall crystal packing at 32.1%, and are situated in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute 27.3%, while H⋯N/N⋯H contacts, seen as a pair of sharp spikes, represent a 14.9% contribution to the surface. Inter­actions of H⋯Br/Br⋯H make up 14.6%, forming pairs of characteristic wings. This is greater than the H⋯Cl/Cl⋯H inter­action in 2, while other contributions are smaller due to the larger van der Waals radius of Br compared to Cl (1.85 vs 1.75 Å; Bondi, 1964) and the corresponding relative contribution to the surface area of the mol­ecule. In Fig. 4b, the percentage contribution of contacts to the Hirshfeld surface for the two compounds is compared. In Fig. 4c, the different inter­actions are plotted onto the Hirshfeld surface. The electrostatic potential energy calculated using the HF/3-21G basis is shown in Fig. 3b. The negative charge is localized on the trz-ph moiety and the Br atom of the complex mol­ecule, whereas the pz-py moieties exhibit relatively positive charges, supporting the stacking of mol­ecules into columns and the arrangement of these columns into diperiodic two-dimensional layers.

Figure 3.

Figure 3

(a) A projection of dnorm mapped on Hirshfeld surfaces, showing the inter­molecular inter­actions within the mol­ecule. Red/blue and white areas represent regions where contacts are shorter/larger than the sum and close to the sum of the van der Waals radii, respectively. (b) Electrostatic potential for the title compound mapped on the Hirshfeld surface. Red/blue and white areas represent regions where the charge is negative/positive or close to zero.

Figure 4.

Figure 4

(a) Decomposition of the two-dimensional fingerprint plot of 1 into specific inter­actions and (b) comparison with those in 2; (c) a projection of dnorm mapped on the Hirshfeld surfaces, showing the inter­molecular inter­actions within the mol­ecule. Red/blue and white areas represent regions where contacts are shorter/larger than the sum and close to the sum of the van der Waals radii, respectively.

5. Energy framework analysis

The energy framework (Spackman et al., 2021), calculated at the HF/3-21G level, includes electrostatic (Eele), polarization (Epol), dispersion (Edis), repulsion (Erep) components and total energy (Etot). Cylindrical radii are scaled to the relative strength. Dispersion forces dominate in the crystal of neutral mol­ecules, and the framework topology reflects the described intra- and inter­layer inter­actions. Calculated Etot values are −49.7 kJ mol−1 (intra­chain), down to −96.5 kJ mol−1 (inter­chain), and −27.0 kJ mol−1 (inter­layer). Color-coded inter­action mappings and detailed energy contributions within 3.8 Å of a central mol­ecule are summarized in Fig. 5ac. Fig. 5d presents a bar plot comparing the Etot values of 1 and 2. Despite identical mol­ecular structures and packing arrangements, variations in the size and electronegativity of halogen substituents account for the differing strengths of inter­molecular inter­actions in the two compounds. Consequently, interactions within a supramol­ecular layer are stronger in 1, whereas the inter­layer inter­actions are comparatively weaker.

Figure 5.

Figure 5

(a) The calculated energy frameworks, showing the total energy diagrams (Etot), (b) decomposition of the energy framework into the part corresponding to the inter­actions within a supra­molecular layer and (c) inter­layer inter­actions. In the table, the corresponding color-coded energy values Etot are provided, including their Eele, Epol, Edis, and Erep components. Tube size is set at 100 scale, the blue color corresponds to the attractive inter­actions, yellow to the repulsive inter­actions; (d) Comparative plots of the absolute Etot values for 1 and 2. The color-coding of the bars corresponds to the symmetry operations in the table above. The asterisks distinguish the energy bars corresponding to the intra­layer inter­actions.

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42; Groom et al., 2016) identifies neutral Ni complexes with tridentate bis­azolpyridine ligands containing deprotonable azole groups, such as YOCFAZ (Yuan et al., 2014), ZOCKOT (Xing et al., 2014), and ZOTVIP (Wei et al., 2015). Table 2 summarizes the structural parameters of these complexes along with complex 2 (KULRIW).

7. Synthesis and crystallization

The ligand was synthesized by a modified procedure reported earlier (Seredyuk et al., 2022), and the synthesis of the title complex followed the method of 2 (Znovjyak et al., 2024). All chemicals were purchased from commercial suppliers and used without further purification (Merck, Enamine Ltd.).

3-(4-Bromo­phen­yl)-5-(6-pyrazol­yl(2-pyrid­yl))-1H-1,2,4-tri­a­zole (L). A Schlenk flask with an inert atmosphere was charged with 6-(1H-pyrazol-1-yl)pyridin-2-ylboronic acid, (1.00 g, 5.3 mmol), 5-iodo-3-(4-bromo­phen­yl)-1-(tetra­hydro-2H-pyran-2-yl)-1H-1,2,4-triazole (2.09 g, 4.8 mmol), [Pd(PPh3)4] (0.61 g, 0.53 mmol) and Na2CO3 (1.65 g, 15.6 mmol). Degassed 1,4-dioxane (20 mL) and degassed water (10 mL) were added, and the reaction mixture was heated to 373 K under vigorous stirring for 16 h. After filtering through a Celite pad, to the obtained solution HClaq (37%, 5 ml) was added dropwise and the obtained solution was stirred for 10 min. Thereafter the pH of the solution was brought to neutral with an aqueous solution of NaOH (10%). The resulting suspension was evaporated to dryness and resuspended in water, and the precipitate was collected by filtration, washed with water and recrystallized from chloro­form-acetone (1:1). After drying in vacuo, the final compound was isolated as an analytically pure white crystalline powder. Yield: 1.02 g, 57%. Elemental analysis calculated for C16H11BrN6: C, 52.34; H, 3.02; N, 22.89. Found: C, 52.12; H, 3.11; N, 22.62. 1H NMR (300 MHz, 298 K, DMSO-d6): δ (ppm) 14.90 (1H, s, trzH), 9.16 (1H, s, pzH), 8.12–7.96 (5H, m, phH/pyH), 7.83 (1H, s, pzH), 7.64 (2H, d, J = 8.4 Hz, phH), 6.62 (1H, s, pzH). 13C NMR (75 MHz, DMSO-d6): δ (ppm) 161.5, 154.5, 150.9, 144.7, 143.0, 141.4, 132.1, 130.7, 128.7, 128.3, 122.9, 118.8, 113.1, 108.7.

Complex 1 was produced by a layering technique in a standard test tube. The layering sequence was as follows: the bottom layer contained a solution of [Ni(L2)](ClO4)2 prepared by dissolving L (101 mg, 0.274 mmol) and Ni(ClO4)2·6H2O (50 mg, 0.137 mmol) in boiling acetone, to which chloro­form (5 ml) was then added. The middle layer was a methanol–chloro­form mixture (1:10, 10 ml), which was covered by a layer of methanol (10 ml), to which 5 drops of NEt3 were added. The tube was sealed, and light violet plate-like single crystals appeared after 2 weeks (yield ca. 65%). Elemental analysis calculated for C34H28Br2N12NiO2: C, 47.75; H, 3.30; N, 19.65. Found: C, 47.52; H, 3.41; N, 19.73.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were refined as riding [C—H = 0.95–0.98 Å with Uiso(H) = 1.2–1.5Ueq(C)]. The hydrogen atom H1A was refined freely.

Table 3. Experimental details.

Crystal data
Chemical formula [Ni(C16H10BrN6)2]·2CH4O
M r 855.21
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 200
a, b, c (Å) 12.8038 (8), 10.1729 (4), 27.9377 (14)
V3) 3638.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.78
Crystal size (mm) 0.3 × 0.2 × 0.03
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2024)
Tmin, Tmax 0.534, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11620, 3218, 2074
R int 0.064
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.134, 1.04
No. of reflections 3218
No. of parameters 236
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.74, −0.81

Computer programs: CrysAlis PRO 1.171.43.124 (Rigaku OD, 2024), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025007467/ee2019sup1.cif

e-81-00906-sup1.cif (506.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025007467/ee2019Isup2.hkl

e-81-00906-Isup2.hkl (257.4KB, hkl)
e-81-00906-Isup3.cdx (25.5KB, cdx)

Supporting information file. DOI: 10.1107/S2056989025007467/ee2019Isup3.cdx

CCDC reference: 2481668

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the FAIRE programme provided by the Cambridge Crystallographic Data Centre (CCDC) for the opportunity to use the Cambridge Structural Database (CSD) and associated software. Author contributions are as follows: Conceptualization, KZ and MS; methodology, KZ; formal analysis, SON; synthesis, SOM; single-crystal measurements, SS; writing (original draft), MS; writing (review and editing of the manuscript), OT, MS; visualization and calculations, KZ, YSM; funding acquisition, MS.

supplementary crystallographic information

Bis{3-(4-bromophenyl)-5-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-4H-1,2,4-triazol-4-ido}nickel(II) methanol disolvate . Crystal data

[Ni(C16H10BrN6)2]·2CH4O Dx = 1.561 Mg m3
Mr = 855.21 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbcn Cell parameters from 1992 reflections
a = 12.8038 (8) Å θ = 2.6–21.9°
b = 10.1729 (4) Å µ = 2.78 mm1
c = 27.9377 (14) Å T = 200 K
V = 3638.9 (3) Å3 Plate, clear colourless
Z = 4 0.3 × 0.2 × 0.03 mm
F(000) = 1720

Bis{3-(4-bromophenyl)-5-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-4H-1,2,4-triazol-4-ido}nickel(II) methanol disolvate . Data collection

Xcalibur, Eos diffractometer 3218 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 2074 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.064
Detector resolution: 16.1593 pixels mm-1 θmax = 25.0°, θmin = 2.2°
ω scans h = −8→15
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2024) k = −12→12
Tmin = 0.534, Tmax = 1.000 l = −33→23
11620 measured reflections

Bis{3-(4-bromophenyl)-5-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-4H-1,2,4-triazol-4-ido}nickel(II) methanol disolvate . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.061 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.042P)2 + 6.2503P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3218 reflections Δρmax = 0.74 e Å3
236 parameters Δρmin = −0.81 e Å3
0 restraints

Bis{3-(4-bromophenyl)-5-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-4H-1,2,4-triazol-4-ido}nickel(II) methanol disolvate . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Bis{3-(4-bromophenyl)-5-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-4H-1,2,4-triazol-4-ido}nickel(II) methanol disolvate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.66307 (8) 0.02071 (7) 0.48878 (3) 0.0797 (4)
Ni1 0.500000 0.70049 (8) 0.750000 0.0216 (2)
N1 0.5117 (3) 0.8456 (4) 0.80613 (15) 0.0256 (10)
N2 0.6139 (3) 0.8692 (4) 0.81923 (16) 0.0248 (10)
N3 0.6556 (3) 0.7082 (4) 0.76558 (14) 0.0219 (10)
N4 0.5627 (3) 0.5623 (4) 0.70264 (15) 0.0231 (10)
N5 0.5333 (3) 0.4789 (4) 0.66679 (15) 0.0251 (10)
N6 0.7063 (3) 0.4515 (4) 0.67934 (16) 0.0259 (10)
C1 0.4561 (4) 0.9206 (5) 0.83493 (19) 0.0301 (13)
H1 0.381986 0.925804 0.834432 0.036*
C2 0.5201 (5) 0.9917 (5) 0.8664 (2) 0.0390 (16)
H2 0.498267 1.051486 0.890526 0.047*
C3 0.6200 (5) 0.9572 (5) 0.8552 (2) 0.0335 (14)
H3 0.681998 0.988952 0.869887 0.040*
C4 0.6923 (4) 0.7938 (5) 0.79686 (18) 0.0241 (12)
C5 0.7978 (4) 0.8087 (5) 0.80651 (19) 0.0325 (14)
H5 0.822350 0.871958 0.828859 0.039*
C6 0.8649 (4) 0.7276 (5) 0.7822 (2) 0.0377 (15)
H6 0.938019 0.735362 0.787377 0.045*
C7 0.8278 (4) 0.6343 (5) 0.7501 (2) 0.0349 (14)
H7 0.874470 0.577053 0.733845 0.042*
C8 0.7215 (4) 0.6267 (5) 0.74235 (18) 0.0237 (12)
C9 0.6658 (4) 0.5433 (5) 0.70830 (18) 0.0237 (12)
C10 0.6212 (4) 0.4151 (5) 0.65395 (19) 0.0260 (13)
C11 0.6278 (4) 0.3207 (5) 0.61459 (19) 0.0275 (13)
C12 0.7116 (5) 0.2340 (5) 0.6123 (2) 0.0380 (15)
H12 0.762148 0.235364 0.637192 0.046*
C13 0.7239 (5) 0.1457 (6) 0.5749 (2) 0.0470 (17)
H13 0.782299 0.088134 0.573719 0.056*
C14 0.6488 (5) 0.1440 (5) 0.5396 (2) 0.0403 (16)
C15 0.5639 (5) 0.2259 (5) 0.5405 (2) 0.0414 (16)
H15 0.513185 0.222718 0.515651 0.050*
C16 0.5530 (5) 0.3147 (5) 0.57862 (19) 0.0345 (14)
H16 0.494019 0.371228 0.579850 0.041*
O1 0.3537 (4) 0.5660 (5) 0.61938 (19) 0.0542 (14)
H1A 0.397 (5) 0.548 (6) 0.635 (2) 0.05 (2)*
C17 0.3843 (6) 0.6447 (6) 0.5808 (3) 0.070 (2)
H17A 0.404825 0.588562 0.553908 0.105*
H17B 0.443564 0.699591 0.590398 0.105*
H17C 0.325855 0.700940 0.571141 0.105*

Bis{3-(4-bromophenyl)-5-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-4H-1,2,4-triazol-4-ido}nickel(II) methanol disolvate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.1213 (9) 0.0692 (5) 0.0486 (5) 0.0147 (5) −0.0015 (5) −0.0307 (4)
Ni1 0.0135 (5) 0.0257 (5) 0.0254 (5) 0.000 −0.0008 (5) 0.000
N1 0.016 (3) 0.031 (2) 0.030 (2) 0.001 (2) −0.006 (2) 0.0002 (19)
N2 0.014 (2) 0.028 (2) 0.032 (3) 0.0003 (19) −0.002 (2) −0.005 (2)
N3 0.016 (2) 0.022 (2) 0.028 (2) −0.0013 (19) −0.001 (2) −0.0033 (18)
N4 0.018 (3) 0.026 (2) 0.025 (2) −0.0010 (19) −0.001 (2) −0.0036 (18)
N5 0.019 (3) 0.030 (2) 0.026 (2) −0.003 (2) 0.000 (2) −0.0039 (19)
N6 0.017 (2) 0.028 (2) 0.033 (3) −0.0011 (19) 0.003 (2) −0.0058 (19)
C1 0.022 (3) 0.037 (3) 0.031 (3) 0.005 (3) 0.002 (3) 0.001 (2)
C2 0.037 (4) 0.045 (4) 0.035 (3) 0.010 (3) 0.006 (3) −0.013 (3)
C3 0.027 (3) 0.037 (3) 0.036 (3) 0.000 (3) −0.006 (3) −0.015 (3)
C4 0.019 (3) 0.023 (3) 0.030 (3) 0.003 (2) −0.004 (3) −0.002 (2)
C5 0.024 (3) 0.041 (3) 0.032 (3) −0.002 (3) −0.006 (3) −0.014 (3)
C6 0.016 (3) 0.050 (4) 0.047 (4) 0.001 (3) −0.007 (3) −0.010 (3)
C7 0.018 (3) 0.044 (3) 0.043 (4) 0.003 (3) 0.001 (3) −0.015 (3)
C8 0.019 (3) 0.029 (3) 0.023 (3) −0.001 (2) 0.000 (3) 0.000 (2)
C9 0.015 (3) 0.029 (3) 0.027 (3) −0.002 (2) −0.002 (3) 0.000 (2)
C10 0.025 (3) 0.025 (3) 0.028 (3) −0.005 (2) −0.001 (3) 0.001 (2)
C11 0.029 (3) 0.027 (3) 0.026 (3) −0.003 (2) 0.004 (3) 0.001 (2)
C12 0.039 (4) 0.041 (3) 0.033 (3) 0.003 (3) −0.007 (3) −0.008 (3)
C13 0.050 (5) 0.046 (4) 0.045 (4) 0.014 (3) 0.006 (4) −0.006 (3)
C14 0.062 (5) 0.028 (3) 0.031 (3) 0.002 (3) 0.006 (4) −0.006 (2)
C15 0.053 (4) 0.042 (4) 0.028 (3) −0.005 (3) −0.004 (3) −0.003 (3)
C16 0.037 (4) 0.029 (3) 0.038 (3) −0.001 (3) −0.003 (3) 0.002 (3)
O1 0.032 (3) 0.073 (3) 0.058 (3) −0.004 (3) −0.009 (3) 0.026 (3)
C17 0.094 (7) 0.054 (4) 0.063 (5) −0.014 (4) −0.021 (5) 0.015 (4)

Bis{3-(4-bromophenyl)-5-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-4H-1,2,4-triazol-4-ido}nickel(II) methanol disolvate . Geometric parameters (Å, º)

Br1—C14 1.903 (5) C5—H5 0.9500
Ni1—N1i 2.159 (4) C5—C6 1.372 (7)
Ni1—N1 2.159 (4) C6—H6 0.9500
Ni1—N3 2.041 (4) C6—C7 1.390 (7)
Ni1—N3i 2.041 (4) C7—H7 0.9500
Ni1—N4i 2.091 (4) C7—C8 1.380 (7)
Ni1—N4 2.091 (4) C8—C9 1.461 (7)
N1—N2 1.380 (5) C10—C11 1.462 (7)
N1—C1 1.318 (6) C11—C12 1.390 (7)
N2—C3 1.347 (6) C11—C16 1.389 (7)
N2—C4 1.409 (6) C12—H12 0.9500
N3—C4 1.320 (6) C12—C13 1.386 (8)
N3—C8 1.349 (6) C13—H13 0.9500
N4—N5 1.366 (5) C13—C14 1.378 (8)
N4—C9 1.344 (6) C14—C15 1.370 (8)
N5—C10 1.348 (6) C15—H15 0.9500
N6—C9 1.339 (6) C15—C16 1.404 (7)
N6—C10 1.352 (6) C16—H16 0.9500
C1—H1 0.9500 O1—H1A 0.73 (6)
C1—C2 1.403 (7) O1—C17 1.398 (8)
C2—H2 0.9500 C17—H17A 0.9800
C2—C3 1.364 (7) C17—H17B 0.9800
C3—H3 0.9500 C17—H17C 0.9800
C4—C5 1.386 (7)
N1—Ni1—N1i 93.7 (2) C6—C5—C4 116.7 (5)
N3—Ni1—N1i 101.33 (16) C6—C5—H5 121.7
N3i—Ni1—N1 101.33 (16) C5—C6—H6 119.5
N3i—Ni1—N1i 75.58 (16) C5—C6—C7 121.0 (5)
N3—Ni1—N1 75.58 (16) C7—C6—H6 119.5
N3i—Ni1—N3 175.6 (2) C6—C7—H7 120.8
N3—Ni1—N4 77.64 (16) C8—C7—C6 118.5 (5)
N3i—Ni1—N4 105.42 (16) C8—C7—H7 120.8
N3i—Ni1—N4i 77.64 (16) N3—C8—C7 120.4 (5)
N3—Ni1—N4i 105.42 (16) N3—C8—C9 111.5 (5)
N4i—Ni1—N1i 153.21 (16) C7—C8—C9 128.0 (5)
N4—Ni1—N1 153.21 (16) N4—C9—C8 118.2 (4)
N4—Ni1—N1i 91.54 (16) N6—C9—N4 114.2 (4)
N4i—Ni1—N1 91.54 (16) N6—C9—C8 127.6 (5)
N4i—Ni1—N4 95.5 (2) N5—C10—N6 113.6 (4)
N2—N1—Ni1 112.2 (3) N5—C10—C11 124.4 (5)
C1—N1—Ni1 143.3 (4) N6—C10—C11 121.9 (5)
C1—N1—N2 104.5 (4) C12—C11—C10 119.7 (5)
N1—N2—C4 117.6 (4) C16—C11—C10 122.2 (5)
C3—N2—N1 111.6 (4) C16—C11—C12 118.1 (5)
C3—N2—C4 130.6 (5) C11—C12—H12 118.9
C4—N3—Ni1 120.9 (3) C13—C12—C11 122.2 (6)
C4—N3—C8 120.2 (4) C13—C12—H12 118.9
C8—N3—Ni1 118.9 (3) C12—C13—H13 121.1
N5—N4—Ni1 140.9 (3) C14—C13—C12 117.9 (6)
C9—N4—Ni1 113.6 (3) C14—C13—H13 121.1
C9—N4—N5 105.5 (4) C13—C14—Br1 118.4 (5)
C10—N5—N4 105.3 (4) C15—C14—Br1 119.3 (5)
C9—N6—C10 101.3 (4) C15—C14—C13 122.3 (5)
N1—C1—H1 124.3 C14—C15—H15 120.6
N1—C1—C2 111.4 (5) C14—C15—C16 118.9 (6)
C2—C1—H1 124.3 C16—C15—H15 120.6
C1—C2—H2 127.1 C11—C16—C15 120.6 (5)
C3—C2—C1 105.8 (5) C11—C16—H16 119.7
C3—C2—H2 127.1 C15—C16—H16 119.7
N2—C3—C2 106.7 (5) C17—O1—H1A 112 (5)
N2—C3—H3 126.6 O1—C17—H17A 109.5
C2—C3—H3 126.6 O1—C17—H17B 109.5
N3—C4—N2 113.6 (4) O1—C17—H17C 109.5
N3—C4—C5 123.2 (5) H17A—C17—H17B 109.5
C5—C4—N2 123.2 (5) H17A—C17—H17C 109.5
C4—C5—H5 121.7 H17B—C17—H17C 109.5
Br1—C14—C15—C16 178.8 (4) C1—N1—N2—C4 175.0 (4)
Ni1—N1—N2—C3 −178.2 (3) C1—C2—C3—N2 −0.6 (6)
Ni1—N1—N2—C4 −3.0 (5) C3—N2—C4—N3 174.0 (5)
Ni1—N1—C1—C2 176.8 (4) C3—N2—C4—C5 −6.4 (9)
Ni1—N3—C4—N2 3.7 (6) C4—N2—C3—C2 −173.9 (5)
Ni1—N3—C4—C5 −175.9 (4) C4—N3—C8—C7 −1.7 (7)
Ni1—N3—C8—C7 176.4 (4) C4—N3—C8—C9 −178.1 (4)
Ni1—N3—C8—C9 0.1 (5) C4—C5—C6—C7 −0.9 (9)
Ni1—N4—N5—C10 −177.8 (4) C5—C6—C7—C8 1.4 (9)
Ni1—N4—C9—N6 177.7 (3) C6—C7—C8—N3 −0.1 (8)
Ni1—N4—C9—C8 −5.4 (6) C6—C7—C8—C9 175.6 (5)
N1—N2—C3—C2 0.5 (6) C7—C8—C9—N4 −172.4 (5)
N1—N2—C4—N3 −0.2 (6) C7—C8—C9—N6 4.0 (9)
N1—N2—C4—C5 179.4 (5) C8—N3—C4—N2 −178.2 (4)
N1—C1—C2—C3 0.5 (7) C8—N3—C4—C5 2.2 (8)
N2—N1—C1—C2 −0.2 (6) C9—N4—N5—C10 0.6 (5)
N2—C4—C5—C6 179.5 (5) C9—N6—C10—N5 −0.8 (6)
N3—C4—C5—C6 −0.9 (8) C9—N6—C10—C11 175.8 (5)
N3—C8—C9—N4 3.6 (6) C10—N6—C9—N4 1.2 (6)
N3—C8—C9—N6 180.0 (5) C10—N6—C9—C8 −175.3 (5)
N4—N5—C10—N6 0.1 (6) C10—C11—C12—C13 −177.6 (5)
N4—N5—C10—C11 −176.4 (4) C10—C11—C16—C15 177.7 (5)
N5—N4—C9—N6 −1.2 (6) C11—C12—C13—C14 −1.0 (9)
N5—N4—C9—C8 175.7 (4) C12—C11—C16—C15 −1.7 (8)
N5—C10—C11—C12 −162.1 (5) C12—C13—C14—Br1 −178.7 (4)
N5—C10—C11—C16 18.4 (8) C12—C13—C14—C15 0.1 (9)
N6—C10—C11—C12 21.6 (8) C13—C14—C15—C16 0.0 (9)
N6—C10—C11—C16 −157.8 (5) C14—C15—C16—C11 0.9 (8)
C1—N1—N2—C3 −0.2 (6) C16—C11—C12—C13 1.8 (9)

Symmetry code: (i) −x+1, y, −z+3/2.

Bis{3-(4-bromophenyl)-5-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-4H-1,2,4-triazol-4-ido}nickel(II) methanol disolvate . Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C11–C16 ring.

D—H···A D—H H···A D···A D—H···A
C3—H3···O1ii 0.95 2.35 3.269 (8) 162
C5—H5···O1ii 0.95 2.48 3.413 (7) 167
C1—H1···N6iii 0.95 2.30 3.238 (6) 171
C7—H7···C1iv 0.95 2.71 3.615 (7) 161
O1—H1A···N5 0.73 (6) 2.08 (6) 2.798 (6) 168 (6)
C2—H2···Cgv 0.95 2.69 3.542 (6) 140

Symmetry codes: (ii) x+1/2, y+1/2, −z+3/2; (iii) x−1/2, y+1/2, −z+3/2; (iv) x+1/2, y−1/2, −z+3/2; (v) −x+1, y+1, −z+3/2.

Hydrogen-bond geometry (Å, °)

D–H···A D–H H···A D···A D–H···A
C3–H3···O1i 0.95 2.35 3.268 (7) 162
C5–H5···O1i 0.95 2.48 3.410 (7) 167
C1–H1···N6ii 0.95 2.30 3.238 (6) 171
C7–H7···C1ii 0.95 2.71 3.615 (7) 161
O1–H1A···N5 0.73 (6) 2.08 (6) 2.798 (6) 168 (6)

Symmetry codes: (i) 1/2 + x, 1/2 + y, 1.5 - z; (ii) 1/2 + x, -1/2 + y, 1.5 - z

Funding Statement

Funding for this research was provided by: grants from the Ministry of Education and Science of Ukraine (grant No. 24BF037-03).

References

  1. Bondi, A. (1964). J. Phys. Chem.68, 441–451.
  2. Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc.112, 6814–6827.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  4. Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Halcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem.58, 9811–9821. [DOI] [PubMed]
  7. Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev.289, 2–12.
  8. Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  9. Seredyuk, M., Znovjyak, K., Valverde-Munoz, F. J., da Silva, I., Munoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc.144, 14297–14309. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  11. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  12. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
  13. Suryadevara, N., Mizuno, A., Spieker, L., Salamon, S., Sleziona, S., Maas, A., Pollmann, E., Heinrich, B., Schleberger, M., Wende, H., Kuppusamy, S. K. & Ruben, M. (2022). Chem. Eur. J.28, e202103853. [DOI] [PMC free article] [PubMed]
  14. Wei, S. Y., Wang, J. L., Zhang, C. S., Xu, X.-T., Zhang, X. X., Wang, J. X. & Xing, Y.-H. (2015). ChemPlusChem80, 549–558. [DOI] [PubMed]
  15. Xing, N., Xu, L. T., Liu, X., Wu, Q., Ma, X. T. & Xing, Y. H. (2014). ChemPlusChem79, 1198–1207.
  16. Yuan, L.-Z., Ge, Q., Zhao, X.-F., Ouyang, Y., Li, S.-H., Xie, C.-Z. & Xu, J.-Y. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem.44, 1175–1182.
  17. Znovjyak, K., Shova, S., Panov, D. M., Kariaka, N. S., Fritsky, I. O., Malinkin, S. O. & Seredyuk, M. (2024). Acta Cryst. E80, 1235–1239. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025007467/ee2019sup1.cif

e-81-00906-sup1.cif (506.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025007467/ee2019Isup2.hkl

e-81-00906-Isup2.hkl (257.4KB, hkl)
e-81-00906-Isup3.cdx (25.5KB, cdx)

Supporting information file. DOI: 10.1107/S2056989025007467/ee2019Isup3.cdx

CCDC reference: 2481668

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES