Skip to main content
Annals of Surgery logoLink to Annals of Surgery
. 1985 Apr;201(4):429–435. doi: 10.1097/00000658-198504000-00005

Modulation of hepatocyte protein synthesis by endotoxin-activated Kupffer cells. II. Mediation by soluble transferrable factors.

G A Keller, M A West, L A Wilkes, F B Cerra, R L Simmons
PMCID: PMC1250729  PMID: 3883924

Abstract

We have previously reported a diminution of protein synthesis by isolated Sprague-Dawley rat hepatocytes following coculture with lipopolysaccharide-triggered nonparenchymal liver cells (NPC) containing 30-40% Kupffer cells. It is possible that this cell-mediated modulation of hepatocyte function represents an in vitro model for hepatic insufficiency occurring in patients with the multiple system organ failure syndrome. In the present report we have determined that supernatant from lipopolysaccharide-triggered NPC was itself capable of inhibiting hepatocyte protein synthesis in a similar fashion. This effect was directly related to the concentration of the supernatant and to the period of exposure to the supernatant. The ability to inhibit hepatocyte protein synthesis by a NPC supernatant suggests that this cell-mediated event is caused at least in part by a relatively stable soluble factor(s) secreted by LPS triggered NPC. Although reagent H2O2 will inhibit protein synthesis when added to hepatocyte culture, LPS-stimulated NPC do not release H2O2 and do not show chemiluminescence--an in vitro correlate of the respiratory burst. Nonspecific protease inhibitors added to the coculture similarly do not influence the system. Combined with other evidence, the soluble mediators do not seem to be the result of oxidative or proteolytic secretions of the effector cells.

Full text

PDF
429

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. O. Effector mechanisms of cytolytically activated macrophages. I. Secretion of neutral proteases and effect of protease inhibitors. J Immunol. 1980 Jan;124(1):286–292. [PubMed] [Google Scholar]
  2. Adams D. O., Kao K. J., Farb R., Pizzo S. V. Effector mechanisms of cytolytically activated macrophages. II. Secretion of a cytolytic factor by activated macrophages and its relationship to secreted neutral proteases. J Immunol. 1980 Jan;124(1):293–300. [PubMed] [Google Scholar]
  3. Adams D. O., Kao K. J., Farb R., Pizzo S. V. Effector mechanisms of cytolytically activated macrophages. II. Secretion of a cytolytic factor by activated macrophages and its relationship to secreted neutral proteases. J Immunol. 1980 Jan;124(1):293–300. [PubMed] [Google Scholar]
  4. Cerra F. B., Siegel J. H., Border J. R., Peters D. M., McMenamy R. R. Correlations between metabolic and cardiopulmonary measurements in patients after trauma, general surgery, and sepsis. J Trauma. 1979 Aug;19(8):621–629. doi: 10.1097/00005373-197908000-00010. [DOI] [PubMed] [Google Scholar]
  5. Cerra F. B., Siegel J. H., Border J. R., Wiles J., McMenamy R. R. The hepatic failure of sepsis: cellular versus substrate. Surgery. 1979 Sep;86(3):409–422. [PubMed] [Google Scholar]
  6. Cohen S. A., Salazar D., Nolan J. P. Natural cytotoxicity of isolated rat liver cells. J Immunol. 1982 Aug;129(2):495–501. [PubMed] [Google Scholar]
  7. Currie G. A., Basham C. Activated macrophages release a factor which lyses malignant cells but not normal cells. J Exp Med. 1975 Dec 1;142(6):1600–1605. doi: 10.1084/jem.142.6.1600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dinarello C. A. Interleukin-1. Rev Infect Dis. 1984 Jan-Feb;6(1):51–95. doi: 10.1093/clinids/6.1.51. [DOI] [PubMed] [Google Scholar]
  9. Drysdale B. E., Shin H. S. Activation of macrophages for tumor cell cytotoxicity: identification of indomethacin sensitive and insensitive pathways. J Immunol. 1981 Aug;127(2):760–765. [PubMed] [Google Scholar]
  10. Drysdale B. E., Shin H. S. Activation of macrophages for tumor cell cytotoxicity: identification of indomethacin sensitive and insensitive pathways. J Immunol. 1981 Aug;127(2):760–765. [PubMed] [Google Scholar]
  11. Eiseman B., Beart R., Norton L. Multiple organ failure. Surg Gynecol Obstet. 1977 Mar;144(3):323–326. [PubMed] [Google Scholar]
  12. Ferluga J., Allison A. C. Role of mononuclear infiltrating cells in pathogenesis of hepatitis. Lancet. 1978 Sep 16;2(8090):610–611. doi: 10.1016/s0140-6736(78)92828-3. [DOI] [PubMed] [Google Scholar]
  13. Fry D. E., Garrison R. N., Heitsch R. C., Calhoun K., Polk H. C., Jr Determinants of death in patients with intraabdominal abscess. Surgery. 1980 Oct;88(4):517–523. [PubMed] [Google Scholar]
  14. Iwata-Dohi N., Esumi-Kurisu M., Ikenami M., Sadatsune K., Mizuno D., Yamazaki M. Enhanced susceptibility of glutaraldehyde-treated tumor cells to antibody-dependent macrophage-mediated cytolysis. Cancer Res. 1982 Aug;42(8):3196–3200. [PubMed] [Google Scholar]
  15. Kawakami M., Pekala P. H., Lane M. D., Cerami A. Lipoprotein lipase suppression in 3T3-L1 cells by an endotoxin-induced mediator from exudate cells. Proc Natl Acad Sci U S A. 1982 Feb;79(3):912–916. doi: 10.1073/pnas.79.3.912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Keller G. A., West M. A., Cerra F. B., Simmons R. L. Multiple systems organ failure. Modulation of hepatocyte protein synthesis by endotoxin activated Kupffer cells. Ann Surg. 1985 Jan;201(1):87–95. [PMC free article] [PubMed] [Google Scholar]
  17. Keller G. A., West M. A., Harty J. T., Wilkes L. A., Cerra F. B., Simmons R. L. Modulation of hepatocyte protein synthesis by endotoxin-activated Kupffer cells. III. Evidence for the role of a monokine similar to but not identical with interleukin-1. Ann Surg. 1985 Apr;201(4):436–443. doi: 10.1097/00000658-198504000-00006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miller D. J., Keeton D. G., Webber B. L., Pathol F. F., Saunders S. J. Jaundice in severe bacterial infection. Gastroenterology. 1976 Jul;71(1):94–97. [PubMed] [Google Scholar]
  19. Munthe-Kaas A. C., Berg T., Seglen P. O., Seljelid R. Mass isolation and culture of rat kupffer cells. J Exp Med. 1975 Jan 1;141(1):1–10. doi: 10.1084/jem.141.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nathan C. F., Brukner L. H., Silverstein S. C., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. I. Pharmacologic triggering of effector cells and the release of hydrogen peroxide. J Exp Med. 1979 Jan 1;149(1):84–99. doi: 10.1084/jem.149.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nathan C. F., Brukner L. H., Silverstein S. C., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. I. Pharmacologic triggering of effector cells and the release of hydrogen peroxide. J Exp Med. 1979 Jan 1;149(1):84–99. doi: 10.1084/jem.149.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nathan C. F., Silverstein S. C., Brukner L. H., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cytotoxicity. J Exp Med. 1979 Jan 1;149(1):100–113. doi: 10.1084/jem.149.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pekala P. H., Kawakami M., Angus C. W., Lane M. D., Cerami A. Selective inhibition of synthesis of enzymes for de novo fatty acid biosynthesis by an endotoxin-induced mediator from exudate cells. Proc Natl Acad Sci U S A. 1983 May;80(9):2743–2747. doi: 10.1073/pnas.80.9.2743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pick E., Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods. 1980;38(1-2):161–170. doi: 10.1016/0022-1759(80)90340-3. [DOI] [PubMed] [Google Scholar]
  25. Polk H. C., Jr, Shields C. L. Remote organ failure: a valid sign of occult intra-abdominal infection. Surgery. 1977 Mar;81(3):310–313. [PubMed] [Google Scholar]
  26. Sipe J. D., Vogel S. N., Ryan J. L., McAdam K. P., Rosenstreich D. L. Detection of a mediator derived from endotoxin-stimulated macrohpages that induces the acute phase serum amyloid A response in mice. J Exp Med. 1979 Sep 19;150(3):597–606. doi: 10.1084/jem.150.3.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Souhami R. L., Bradfield J. W. The recovery of hepatic phagocytosis after blockade of Kupffer cells. J Reticuloendothel Soc. 1974 Aug;16(2):75–86. [PubMed] [Google Scholar]
  28. Soyka L. F., Hunt W. G., Knight S. E., Foster R. S., Jr Decreased liver and lung drug-metabolizing activity in mice treated with Corynebacterium parvum. Cancer Res. 1976 Dec;36(12):4425–4428. [PubMed] [Google Scholar]
  29. Vermillion S. E., Gregg J. A., Baggenstoss A. H., Bartholomew L. G. Jaundice associated with bacteremia. Arch Intern Med. 1969 Nov;124(5):611–618. [PubMed] [Google Scholar]
  30. Weiss S. J., Slivka A. Monocyte and granulocyte-mediated tumor cell destruction. A role for the hydrogen peroxide-myeloperoxidase-chloride system. J Clin Invest. 1982 Feb;69(2):255–262. doi: 10.1172/JCI110447. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Annals of Surgery are provided here courtesy of Lippincott, Williams, and Wilkins

RESOURCES