Abstract
Fibronectin exists in a soluble form in plasma and in an insoluble form in tissues. Plasma fibronectin can modulate phagocytic function as well as incorporate into the tissue matrix where it is believed to influence microvascular integrity and tissue repair. The temporal alterations in plasma and lung lymph fibronectin were studied in relation to increased pulmonary vascular permeability induced by protease infusion. The acute sheep lung lymph fistula model was used. A 39% decrease in plasma fibronectin (control = 421 +/- 67 micrograms/ml) was observed 2.5 hours (255 +/- 43 micrograms/ml) after protease infusion. There was an elevation of lymph fibronectin early after protease infusion, followed by a progressive decline. Concomitant with the decrease in plasma fibronectin, an increase in lymph flow (QL) of greater than 200% (from a control of 6.7 +/- 1.0 ml/hr to 13.9 +/- 1.4 ml/hr) was observed within 2.5 hours. Also, there was a sustained elevation in the total protein lymph/plasma concentration (L/P) ratio, which was maximal at 2.5 hours. The transvascular protein clearance (TVPC = QL X L/P) was 4.5 +/- 0.7 ml/hr at the control period and 13.1 +/- 2.0 ml/hr by 2.5 hours. This was indicative of increased flux of protein-rich fluid across the pulmonary endothelial barrier. Lung vascular permeability stabilized after 2.5 hours as manifested by a slowly declining L/P ratio. Thus, plasma fibronectin deficiency may contribute to the etiology of increased lung vascular permeability with protease infusion. Since the progressive decline in plasma fibronectin was not reflected in a proportional increase in lymph fibronectin, plasma fibronectin may have sequestered in tissues such as the lung, or perhaps in reticuloendothelial cells during the injury phase. Whether the progressive decrease in plasma fibronectin reflects its incorporation into the endothelial barrier matrix where it may mediate stabilization of the pulmonary microvascular barrier remains to be determined.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barie P. S., Tahamont M. V., Malik A. B. Prevention of increased pulmonary vascular permeability after pancreatitis by granulocyte depletion in sheep. Am Rev Respir Dis. 1982 Nov;126(5):904–908. doi: 10.1164/arrd.1982.126.5.904. [DOI] [PubMed] [Google Scholar]
- Blumenstock F. A., Saba T. M., Weber P., Laffin R. Biochemical and immunological characterization of human opsonic alpha2SB glycoprotein: its identity with cold-insoluble globulin. J Biol Chem. 1978 Jun 25;253(12):4287–4291. [PubMed] [Google Scholar]
- Brigham K. L., Woolverton W. C., Blake L. H., Staub N. C. Increased sheep lung vascular permeability caused by pseudomonas bacteremia. J Clin Invest. 1974 Oct;54(4):792–804. doi: 10.1172/JCI107819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark R. A., Dvorak H. F., Colvin R. B. Fibronectin in delayed-type hypersensitivity skin reactions: associations with vessel permeability and endothelial cell activation. J Immunol. 1981 Feb;126(2):787–793. [PubMed] [Google Scholar]
- Craddock P. R., Fehr J., Dalmasso A. P., Brighan K. L., Jacob H. S. Hemodialysis leukopenia. Pulmonary vascular leukostasis resulting from complement activation by dialyzer cellophane membranes. J Clin Invest. 1977 May;59(5):879–888. doi: 10.1172/JCI108710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deno D. C., Lewis E. P., Saba T. M. Clearance from the vascular compartment of endogenously labelled plasma fibronectin. J Trauma. 1984 Feb;24(2):91–98. doi: 10.1097/00005373-198402000-00001. [DOI] [PubMed] [Google Scholar]
- Deno D. C., McCafferty M. H., Saba T. M., Blumenstock F. A. Mechanism of acute depletion of plasma fibronectin following thermal injury in rats. Appearance of a gelatinlike ligand in plasma. J Clin Invest. 1984 Jan;73(1):20–34. doi: 10.1172/JCI111191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deno D. C., Saba T. M., Lewis E. P. Kinetics of endogenously labeled plasma fibronectin: incorporation into tissues. Am J Physiol. 1983 Oct;245(4):R564–R575. doi: 10.1152/ajpregu.1983.245.4.R564. [DOI] [PubMed] [Google Scholar]
- Engvall E., Ruoslahti E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer. 1977 Jul 15;20(1):1–5. doi: 10.1002/ijc.2910200102. [DOI] [PubMed] [Google Scholar]
- Gold L. I., Pearlstein E. Fibronectin-collagen binding and requirement during cellular adhesion. Biochem J. 1980 Feb 15;186(2):551–559. doi: 10.1042/bj1860551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammerschmidt D. E., Weaver L. J., Hudson L. D., Craddock P. R., Jacob H. S. Association of complement activation and elevated plasma-C5a with adult respiratory distress syndrome. Pathophysiological relevance and possible prognostic value. Lancet. 1980 May 3;1(8175):947–949. doi: 10.1016/s0140-6736(80)91403-8. [DOI] [PubMed] [Google Scholar]
- Harlan J. M., Killen P. D., Harker L. A., Striker G. E., Wright D. G. Neutrophil-mediated endothelial injury in vitro mechanisms of cell detachment. J Clin Invest. 1981 Dec;68(6):1394–1403. doi: 10.1172/JCI110390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayman E. G., Ruoslahti E. Distribution of fetal bovine serum fibronectin and endogenous rat cell fibronectin in extracellular matrix. J Cell Biol. 1979 Oct;83(1):255–259. doi: 10.1083/jcb.83.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hynes R. O., Yamada K. M. Fibronectins: multifunctional modular glycoproteins. J Cell Biol. 1982 Nov;95(2 Pt 1):369–377. doi: 10.1083/jcb.95.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaffe E. A., Mosher D. F. Synthesis of fibronectin by cultured human endothelial cells. J Exp Med. 1978 Jun 1;147(6):1779–1791. doi: 10.1084/jem.147.6.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan J. E., Molnar J., Saba T. M., Allen C. Comparative disappearance and localization of isotopically labeled opsonic protein and soluble albumin following surgical trauma. J Reticuloendothel Soc. 1976 Nov;20(5):375–384. [PubMed] [Google Scholar]
- Kwaan H. C., Anderson M. C., Gramatica L. A study of pancreatic enzymes as a factor in the pathogenesis of disseminated intravascular coagulation during acute pancreatitis. Surgery. 1971 May;69(5):663–672. [PubMed] [Google Scholar]
- LEE L., McCLUSKEY R. T. Immunohistochemical demonstration of the reticuloendothelial clearance of circulating fibrin aggregates. J Exp Med. 1962 Nov 1;116:611–618. doi: 10.1084/jem.116.5.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lanser M. E., Saba T. M. Neutrophil-mediated lung localization of bacteria: a mechanism for pulmonary injury. Surgery. 1981 Sep;90(3):473–481. [PubMed] [Google Scholar]
- Lee B. C., Malik A. B., Barie P. S., Minnear F. L. Effect of acute pancreatitis on pulmonary transvascular fluid and protein exchange. Am Rev Respir Dis. 1981 Jun;123(6):618–621. doi: 10.1164/arrd.1981.123.6.618. [DOI] [PubMed] [Google Scholar]
- Malik A. B., van der Zee H. Lung vascular permeability following progressive pulmonary embolization. J Appl Physiol Respir Environ Exerc Physiol. 1978 Oct;45(4):590–597. doi: 10.1152/jappl.1978.45.4.590. [DOI] [PubMed] [Google Scholar]
- McDonald J. A., Baum B. J., Rosenberg D. M., Kelman J. A., Brin S. C., Crystal R. G. Destruction of a major extracellular adhesive glycoprotein (fibronectin) of human fibroblasts by neutral proteases from polymorphonuclear leukocyte granules. Lab Invest. 1979 Mar;40(3):350–357. [PubMed] [Google Scholar]
- Mosher D. F. Physiology of fibronectin. Annu Rev Med. 1984;35:561–575. doi: 10.1146/annurev.me.35.020184.003021. [DOI] [PubMed] [Google Scholar]
- Niehaus G. D., Schumacker P. T., Saba T. M. Influence of opsonic fibronectin deficiency on lung fluid balance during bacterial sepsis. J Appl Physiol Respir Environ Exerc Physiol. 1980 Oct;49(4):693–699. doi: 10.1152/jappl.1980.49.4.693. [DOI] [PubMed] [Google Scholar]
- Oh E., Pierschbacher M., Ruoslahti E. Deposition of plasma fibronectin in tissues. Proc Natl Acad Sci U S A. 1981 May;78(5):3218–3221. doi: 10.1073/pnas.78.5.3218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ranson J. H., Turner J. W., Roses D. F., Rifkind K. M., Spencer F. C. Respiratory complications in acute pancreatitis. Ann Surg. 1974 May;179(5):557–566. doi: 10.1097/00000658-197405000-00006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robbins A. B., Doran J. E., Reese A. C., Mansberger A. R., Jr Cold insoluble globulin levels in operative trauma: serum depletion, wound sequestration, and biological activity: an experimental and clinical study. Am Surg. 1980 Dec;46(12):663–672. [PubMed] [Google Scholar]
- Rovin B., Molnar J., Chevalier D., Ng P. Interaction of plasma fibronectin (pFN) with membranous constituents of peritoneal exudate cells and pulmonary macrophages. J Leukoc Biol. 1984 Nov;36(5):601–620. doi: 10.1002/jlb.36.5.601. [DOI] [PubMed] [Google Scholar]
- Saba T. M., Blumenstock F. A., Scovill W. A., Bernard H. Cryoprecipitate reversal of opsonic alpha2-surface binding glycoprotein deficiency in septic surgical and trauma patients. Science. 1978 Aug 18;201(4356):622–624. doi: 10.1126/science.675246. [DOI] [PubMed] [Google Scholar]
- Saba T. M., Blumenstock F. A., Shah D. M., Kaplan J. E., Cho E., Scovill W., Stratton H., Newell J., Gottlieb M., Sedransk N. Reversal of fibronectin and opsonic deficiency in patients. A controlled study. Ann Surg. 1984 Jan;199(1):87–96. doi: 10.1097/00000658-198401000-00015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saba T. M., Di Luzio N. R. Reticuloendothelial blockade and recovery as a function of opsonic activity. Am J Physiol. 1969 Jan;216(1):197–205. doi: 10.1152/ajplegacy.1969.216.1.197. [DOI] [PubMed] [Google Scholar]
- Saba T. M., Jaffe E. Plasma fibronectin (opsonic glycoprotein): its synthesis by vascular endothelial cells and role in cardiopulmonary integrity after trauma as related to reticuloendothelial function. Am J Med. 1980 Apr;68(4):577–594. doi: 10.1016/0002-9343(80)90310-1. [DOI] [PubMed] [Google Scholar]
- Saba T. M., Niehaus G. D., Scovill W. A., Blumenstock F. A., Newell J. C., Holman J., Jr, Powers S. R., Jr Lung vascular permeability after reversal of fibronectin deficiency in septic sheep. Correlation with patient studies. Ann Surg. 1983 Nov;198(5):654–662. doi: 10.1097/00000658-198311000-00016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schumacker P. R., Saba T. M. Pulmonary gas exchange abnormalities following intravascular coagulation. Reticuloendothelial involvement. Ann Surg. 1980 Jul;192(1):95–102. doi: 10.1097/00000658-198007000-00016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staub N. C., Bland R. D., Brigham K. L., Demling R., Erdmann A. J., 3rd, Woolverton W. C. Preparation of chronic lung lymph fistulas in sheep. J Surg Res. 1975 Nov;19(5):315–320. doi: 10.1016/0022-4804(75)90056-6. [DOI] [PubMed] [Google Scholar]
- Stenman S., Vaheri A. Distribution of a major connective tissue protein, fibronectin, in normal human tissues. J Exp Med. 1978 Apr 1;147(4):1054–1064. doi: 10.1084/jem.147.4.1054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tahamont M. V., Barie P. S., Blumenstock F. A., Hussain M. H., Malik A. B. Increased lung vascular permeability after pancreatitis and trypsin infusion. Am J Pathol. 1982 Oct;109(1):15–26. [PMC free article] [PubMed] [Google Scholar]
- Wojtecka-Lukasik E., Kaczanowska J., Tomczak Z., Sopata I., Kopeć M. Effects of neutral proteases from human leukocytes on plasma fibronectin. Thromb Res. 1984 Mar 1;33(5):471–476. doi: 10.1016/0049-3848(84)90012-4. [DOI] [PubMed] [Google Scholar]
