Skip to main content
Canadian Journal of Veterinary Research logoLink to Canadian Journal of Veterinary Research
. 1986 Jan;50(1):88–95.

Electron microscopic studies on the interaction between normal mice peritoneal phagocytes and Treponema hyodysenteriae, Treponema innocens and Bacteroides vulgatus.

M A Albassam, H J Olander, H L Thacker, J J Turek
PMCID: PMC1255165  PMID: 3742364

Abstract

One hundred and twenty female mice (CF1 strain) were divided into three groups of 40. The first group was injected intraperitoneally with broth cultures of Treponema hyodysenteriae. The second group was injected with a combination of T. hyodysenteriae and Bacteroides vulgatus. The third group was injected with Treponema innocens. Peritoneal wash from four mice of each group was collected at eight time intervals postinjection, then prepared for and examined by light and electron microscopy. Peritoneal wash from one mouse at each time interval was prepared for microbiological examination. Treponema hyodysenteriae produced peritoneal macrophage aggregation, transient neutrophilia and macrophage cytolysis. Cytolysis was characterized by rarefaction of the cytoplasm, vesiculation of the endoplasmic reticulum, mild swelling of the mitochondria and disruption of the nuclear and ctyoplasmic membranes. The combination of T. hyodysenteriae and B. vulgatus produced macrophage aggregation and marked neutrophil necrosis. Peritoneal macrophages phagocytized more T. hyodysenteriae than B. vulgatus during early postinjection intervals. Treponema innocens failed to produce cytotoxicity of peritoneal macrophages but did produce macrophage aggregation and transient neutrophilia. Treponema hyodysenteriae and T. innocens did not multiply in the mice peritoneal cavity and were reisolated up to 16 hours postinjection. Bacteroides vulgatus was reisolated up to 24 hours postinjection.

Full text

PDF
88

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albassam M. A., Olander H. J., Thacker H. L., Turek J. J. Ultrastructural characterization of colonic lesions in pigs inoculated with Treponema hyodysenteriae. Can J Comp Med. 1985 Oct;49(4):384–390. [PMC free article] [PubMed] [Google Scholar]
  2. Cinco M., Banfi E., Soranzo M. R. Studies on the interaction between macrophages and leptospires. J Gen Microbiol. 1981 Jun;124(2):409–413. doi: 10.1099/00221287-124-2-409. [DOI] [PubMed] [Google Scholar]
  3. De Heer E., Kersten M. C., Van der Meer C., Linnemans W. A., Willers J. M. Electron microscopic observations on the interaction of Listeria monocytogenes and peritoneal macrophages of normal mice. Lab Invest. 1980 Nov;43(5):449–455. [PubMed] [Google Scholar]
  4. Ingham H. R., Sisson P. R., Middleton R. L., Narang H. K., Codd A. A., Selkon J. B. Phagocytosis and killing of bacteria in aerobic and anaerobic conditions. J Med Microbiol. 1981 Nov;14(4):391–399. doi: 10.1099/00222615-14-4-391. [DOI] [PubMed] [Google Scholar]
  5. Ingham H. R., Sisson P. R., Tharagonnet D., Selkon J. B., Codd A. A. Inhibition of phagocytosis in vitro by obligate anaerobes. Lancet. 1977 Dec 17;2(8051):1252–1254. doi: 10.1016/s0140-6736(77)92662-9. [DOI] [PubMed] [Google Scholar]
  6. Kinyon J. M., Harris D. L., Glock R. D. Enteropathogenicity of various isolates of Treponema hyodysenteriae. Infect Immun. 1977 Feb;15(2):638–646. doi: 10.1128/iai.15.2.638-646.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kishimoto R. A., Veltri B. J., Canonico P. G., Shirey F. G., Walker J. S. Electron microscopic study on the interaction between normal guinea pig peritoneal macrophages and Coxiella burnetii. Infect Immun. 1976 Oct;14(4):1087–1096. doi: 10.1128/iai.14.4.1087-1096.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Meyer R. C., Simon J., Byerly C. S. The etiology of swine dysentery. III. The role of selected gram-negative obligate anaerobes. Vet Pathol. 1975;12(1):46–54. doi: 10.1177/030098587501200107. [DOI] [PubMed] [Google Scholar]
  9. Nichols B. A., O'Connor G. R. Penetration of mouse peritoneal macrophages by the protozoon Toxoplasma gondii. New evidence for active invasion and phagocytosis. Lab Invest. 1981 Apr;44(4):324–335. [PubMed] [Google Scholar]
  10. Nuessen M. E., Birmingham J. R., Joens L. A. Biological activity of a lipopolysaccharide extracted from Treponema hyodysenteriae. Infect Immun. 1982 Jul;37(1):138–142. doi: 10.1128/iai.37.1.138-142.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Peterson P. K., Verhoef J., Sabath L. D., Quie P. G. Extracellular and bacterial factors influencing staphylococcal phagocytosis and killing by human polymorphonuclear leukocytes. Infect Immun. 1976 Aug;14(2):496–501. doi: 10.1128/iai.14.2.496-501.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tomita T., Blumenstock E., Kanegasaki S. Phagocytic and chemiluminescent responses of mouse peritoneal macrophages to living and killed Salmonella typhimurium and other bacteria. Infect Immun. 1981 Jun;32(3):1242–1248. doi: 10.1128/iai.32.3.1242-1248.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wilcock B. P., Olander H. J. Studies on the pathogenesis of swine dysentery. II. Search for a cytotoxin in spirochetal broth cultures and colon content. Vet Pathol. 1979 Sep;16(5):567–573. doi: 10.1177/030098587901600509. [DOI] [PubMed] [Google Scholar]

Articles from Canadian Journal of Veterinary Research are provided here courtesy of Canadian Veterinary Medical Association

RESOURCES