Abstract
This study tested the hypothesis that calcium-release from sarcoplasmic reticulum isolated from malignant hyperthermia swine had abnormal concentration-dependency on release modulators. Halothane stimulated half-maximal calcium-release at similar concentrations for malignant hyperthermia and control sarcoplasmic reticulum (0.10 +/- 0.04 mM). However, concentrations causing half-maximal calcium-release were lower for malignant hyperthermia sarcoplasmic reticulum (P less than 0.001) by an order of magnitude for Ca2+ (28.1 +/- 8.3 versus 1.23 +/- 0.45 nM), adenosine triphosphate (0.33 +/- 0.09 versus 0.023 +/- 0.014 mM) and caffeine (7.79 +/- 1.56 versus 0.80 +/- 0.44 mM). Half-maximal inhibition by Mg2+ occurred at threefold higher concentrations for malignant hyperthermia sarcoplasmic reticulum (0.23 +/- 0.02 versus 0.78 +/- 0.17 mM). The Ca2+-sensitivity curves for calcium-release by sarcoplasmic reticulum isolated from heterozygotes for the malignant hyperthermia-defect were indistinguishable from the averages of the curves for controls and malignant hyperthermia-homozygotes. Results of this study suggest that malignant hyperthermia is initiated due to a hypersensitive calcium-release mechanism which is inherited in an autosomal, codominant pattern and may be diagnosed using calcium-release sensitivity-tests on isolated sarcoplasmic reticulum.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- A protocol for the investigation of malignant hyperpyrexia (MH) susceptibility. The European Malignant Hyperpyrexia Group. Br J Anaesth. 1984 Nov;56(11):1267–1269. doi: 10.1093/bja/56.11.1267. [DOI] [PubMed] [Google Scholar]
- Barchi R. L., Weigele J. B., Chalikian D. M., Murphy L. E. Muscle surface membranes: preparative methods affect apparent chemical properties and neurotoxin binding. Biochim Biophys Acta. 1979 Jan 5;550(1):59–76. doi: 10.1016/0005-2736(79)90115-9. [DOI] [PubMed] [Google Scholar]
- Brandt N. R., Caswell A. H., Brunschwig J. P. ATP-energized Ca2+ pump in isolated transverse tubules of skeletal muscle. J Biol Chem. 1980 Jul 10;255(13):6290–6298. [PubMed] [Google Scholar]
- Britt B. A., Frodis W., Scott E., Clements M. J., Endrenyi L. Comparison of the caffeine skinned fibre tension (CSFT) test with the caffeine-halothane contracture (CHC) test in the diagnosis of malignant hyperthermia. Can Anaesth Soc J. 1982 Nov;29(6):550–562. doi: 10.1007/BF03007740. [DOI] [PubMed] [Google Scholar]
- Caillé J., Ildefonse M., Rougier O. Excitation-contraction coupling in skeletal muscle. Prog Biophys Mol Biol. 1985;46(3):185–239. doi: 10.1016/0079-6107(85)90009-4. [DOI] [PubMed] [Google Scholar]
- Ellis F. R., Harriman D. G., Keaney N. P., Kyei-Mensah K., Tyrrell J. H. Halothane-induced muscle contracture as a cause of hyperpyrexia. Br J Anaesth. 1971 Jul;43(7):721–722. [PubMed] [Google Scholar]
- Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
- Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
- Forrest J. C., Will J. A., Schmidt G. R., Judge M. D., Briskey E. J. Homeostasisin animals (Sus domesticus) during exposure to a warm environment. J Appl Physiol. 1968 Jan;24(1):33–39. doi: 10.1152/jappl.1968.24.1.33. [DOI] [PubMed] [Google Scholar]
- Gronert G. A., Heffron J. J., Taylor S. R. Skeletal muscle sarcoplasmic reticulum in porcine malignant hyperthermia. Eur J Pharmacol. 1979 Sep 15;58(2):179–187. doi: 10.1016/0014-2999(79)90010-4. [DOI] [PubMed] [Google Scholar]
- Gronert G. A. Malignant hyperthermia. Anesthesiology. 1980 Nov;53(5):395–423. doi: 10.1097/00000542-198011000-00007. [DOI] [PubMed] [Google Scholar]
- Gronert G. A. Muscle contractures and adenosine triphosphate depletion in porcine malignant hyperthermia. Anesth Analg. 1979 Sep-Oct;58(5):367–371. doi: 10.1213/00000539-197909000-00004. [DOI] [PubMed] [Google Scholar]
- Kim D. H., Ohnishi S. T., Ikemoto N. Kinetic studies of calcium release from sarcoplasmic reticulum in vitro. J Biol Chem. 1983 Aug 25;258(16):9662–9668. [PubMed] [Google Scholar]
- Kim D. H., Sreter F. A., Ohnishi S. T., Ryan J. F., Roberts J., Allen P. D., Meszaros L. G., Antoniu B., Ikemoto N. Kinetic studies of Ca2+ release from sarcoplasmic reticulum of normal and malignant hyperthermia susceptible pig muscles. Biochim Biophys Acta. 1984 Sep 5;775(3):320–327. doi: 10.1016/0005-2736(84)90187-1. [DOI] [PubMed] [Google Scholar]
- Lau Y. H., Caswell A. H., Brunschwig J. P. Isolation of transverse tubules by fractionation of triad junctions of skeletal muscle. J Biol Chem. 1977 Aug 10;252(15):5565–5574. [PubMed] [Google Scholar]
- Lister D., Sair R. A., Will J. A., Schmidt G. R., Cassens R. G., Hoekstra W. G., Briskey E. J. Metabolism of striated muscle of stress-susceptible pigs breathing oxygen or nitrogen. Am J Physiol. 1970 Jan;218(1):102–107. doi: 10.1152/ajplegacy.1970.218.1.102. [DOI] [PubMed] [Google Scholar]
- Macart M., Gerbaut L. An improvement of the Coomassie Blue dye binding method allowing an equal sensitivity to various proteins: application to cerebrospinal fluid. Clin Chim Acta. 1982 Jun 16;122(1):93–101. doi: 10.1016/0009-8981(82)90100-0. [DOI] [PubMed] [Google Scholar]
- Martonosi A. N. Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle. Physiol Rev. 1984 Oct;64(4):1240–1320. doi: 10.1152/physrev.1984.64.4.1240. [DOI] [PubMed] [Google Scholar]
- Meissner G. Adenine nucleotide stimulation of Ca2+-induced Ca2+ release in sarcoplasmic reticulum. J Biol Chem. 1984 Feb 25;259(4):2365–2374. [PubMed] [Google Scholar]
- Mitchell G., Heffron J. J. Porcine stress syndromes. Adv Food Res. 1982;28:167–230. doi: 10.1016/s0065-2628(08)60112-3. [DOI] [PubMed] [Google Scholar]
- Nelson T. E. Abnormality in calcium release from skeletal sarcoplasmic reticulum of pigs susceptible to malignant hyperthermia. J Clin Invest. 1983 Sep;72(3):862–870. doi: 10.1172/JCI111057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Brien P. J., Forsyth G. W., Olexson D. W., Thatte H. S., Addis P. B. Canine malignant hyperthermia susceptibility: erythrocytic defects--osmotic fragility, glucose-6-phosphate dehydrogenase deficiency and abnormal Ca2+ homeostasis. Can J Comp Med. 1984 Oct;48(4):381–389. [PMC free article] [PubMed] [Google Scholar]
- O'Brien P. J. Porcine malignant hyperthermia susceptibility: increased calcium-sequestering activity of skeletal muscle sarcoplasmic reticulum. Can J Vet Res. 1986 Jul;50(3):329–337. [PMC free article] [PubMed] [Google Scholar]
- O'Brien P. J., Rooney M. T., Reik T. R., Thatte H. S., Rempel W. E., Addis P. B., Louis C. F. Porcine malignant hyperthermia susceptibility: erythrocytic osmotic fragility. Am J Vet Res. 1985 Jul;46(7):1451–1456. [PubMed] [Google Scholar]
- Ohnishi S. T. Calcium-induced calcium release from fragmented sarcoplasmic reticulum. J Biochem. 1979 Oct;86(4):1147–1150. doi: 10.1093/oxfordjournals.jbchem.a132609. [DOI] [PubMed] [Google Scholar]
- Ohnishi S. T., Taylor S., Gronert G. A. Calcium-induced Ca2+ release from sarcoplasmic reticulum of pigs susceptible to malignant hyperthermia. The effects of halothane and dantrolene. FEBS Lett. 1983 Sep 5;161(1):103–107. doi: 10.1016/0014-5793(83)80739-x. [DOI] [PubMed] [Google Scholar]
- Reik T. R., Rempel W. E., McGrath C. J., Addis P. B. Further evidence on the inheritance of halothane reaction in pigs. J Anim Sci. 1983 Oct;57(4):826–831. doi: 10.2527/jas1983.574826x. [DOI] [PubMed] [Google Scholar]
- Seeler D. C., McDonell W. N., Basrur P. K. Halothane and halothane/succinylcholine induced malignant hyperthermia (porcine stress syndrome) in a population of Ontario boars. Can J Comp Med. 1983 Jul;47(3):284–290. [PMC free article] [PubMed] [Google Scholar]
- Yamamoto N., Kasai M. Mechanism and function of the Ca2+-gated cation channel in sarcoplasmic reticulum vesicles. J Biochem. 1982 Aug;92(2):485–496. doi: 10.1093/oxfordjournals.jbchem.a133956. [DOI] [PubMed] [Google Scholar]