Skip to main content
Canadian Journal of Veterinary Research logoLink to Canadian Journal of Veterinary Research
. 1988 Oct;52(4):407–410.

Halothane induced vasomotion of coronary, renal and iliac arterial rings in malignant hyperthermia susceptible swine.

L DeRoth 1, S Nadeau 1, H Héon 1
PMCID: PMC1255481  PMID: 3196969

Abstract

Animals were identified as porcine malignant hyperthermia susceptible by halothane testing and were slaughtered at 90 kg of body weight. Coronary, renal and iliac arteries were isolated, dissected and 5 mm rings were mounted in 20 mL organ baths with modified Krebs solution maintained at 37 degrees C and oxygenated with 95% O2, 5% CO2. Halothane at 0%, 0.5%, 2% and 5% concentration was bubbled in the organ baths and mechanical responses were recorded over a period of 25 min. Halothane free arteries remained quiescent and the arteries from the halothane sensitive and from the halothane resistant groups reacted similarly. All arteries in the presence of halothane responded with an initial contraction of short duration followed by a relaxation and both phenomena occurred in a concentration-dependent fashion. The iliac artery was the most sensitive to halothane and responded to 0.5% concentration while coronary and renal arteries maintained the resting tension of 4 g. These results demonstrate that vascular smooth muscle, like skeletal muscle and unlike respiratory smooth muscle, has a direct pharmacological response to halothane. These observations led to the postulate that halothane by its transient but significant vasoconstrictive action could be a contributing factor to initiate the fulminant reactions occurring in malignant hyperthermia.

Full text

PDF
407

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berman M. C., Harrison G. G., Bull A. B., Kench J. E. Changes underlying halothane-induced malignant hyperpyrexia in Landrace pigs. Nature. 1970 Feb 14;225(5233):653–655. doi: 10.1038/225653a0. [DOI] [PubMed] [Google Scholar]
  2. Britt B. A. Etiology and pathophysiology of malignant hyperthermia. Fed Proc. 1979 Jan;38(1):44–48. [PubMed] [Google Scholar]
  3. D'Allaire S., Deroth L. Incidence of porcine stress syndrome susceptibility at the st. Cyrille record of performance station in Québec. Can Vet J. 1982 May;23(5):168–168. [PMC free article] [PubMed] [Google Scholar]
  4. DEUTSCH S., LINDE H. W., DRIPPS R. D., PRICE H. L. Circulatory and respiratory actions of halothane in normal man. Anesthesiology. 1962 Sep-Oct;23:631–638. [PubMed] [Google Scholar]
  5. Gronert G. A. Malignant hyperthermia. Anesthesiology. 1980 Nov;53(5):395–423. doi: 10.1097/00000542-198011000-00007. [DOI] [PubMed] [Google Scholar]
  6. Gronert G. A., Theye R. A. Halothane-induced porcine malignant hyperthermia: metabolic and hemodynamic changes. Anesthesiology. 1976 Jan;44(1):36–43. doi: 10.1097/00000542-197601000-00008. [DOI] [PubMed] [Google Scholar]
  7. Hall G. M., Lucke J. N., Orchard C., Lovell R., Lister D. Effect of dantrolene on leg metabolism in porcine malignant hyperthermia. Anaesthesia. 1982 Dec;37(12):1167–1170. doi: 10.1111/j.1365-2044.1982.tb01781.x. [DOI] [PubMed] [Google Scholar]
  8. Hall G. M., Lucke J. N., Orchard C., Lovell R., Lister D. Porcine malignant hyperthermia. VIII: leg metabolism. Br J Anaesth. 1982 Sep;54(9):941–947. doi: 10.1093/bja/54.9.941. [DOI] [PubMed] [Google Scholar]
  9. Kalow W., Britt B. A., Richter A. The caffeine test of isolated human muscle in relation to malignant hyperthermia. Can Anaesth Soc J. 1977 Nov;24(6):678–694. doi: 10.1007/BF03006711. [DOI] [PubMed] [Google Scholar]
  10. Malo D., DeRoth L. Effects of bolus injection of epinephrine and norepinephrine on systolic time intervals in stress-resistant and stress-susceptible pigs. Am J Vet Res. 1986 Jul;47(7):1565–1568. [PubMed] [Google Scholar]
  11. McGrath C. J., Lee J. C., Rempel W. E. Halothane testing for malignant hyperthermia in swine: dose-response effects. Am J Vet Res. 1984 Sep;45(9):1734–1736. [PubMed] [Google Scholar]
  12. Mitchell G., Heffron J. J. Porcine stress syndromes. Adv Food Res. 1982;28:167–230. doi: 10.1016/s0065-2628(08)60112-3. [DOI] [PubMed] [Google Scholar]
  13. Mitchell H. W., Denborough M. A. Smooth muscle contracture in malignant hyperpyrexia. Br J Anaesth. 1980 Jun;52(6):637–637. doi: 10.1093/bja/52.6.637-a. [DOI] [PubMed] [Google Scholar]
  14. Moulds R. F., Denborough M. A. Biochemical basis of malignant hyperpyrexia. Br Med J. 1974 May 4;2(5913):241–244. doi: 10.1136/bmj.2.5913.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Muldoon S. M., Vanhoutte P. M., Lorenz R. R., Van Dyke R. A. Venomotor changes caused by halothane acting on the sympathetic nerves. Anesthesiology. 1975 Jul;43(1):41–48. doi: 10.1097/00000542-197507000-00006. [DOI] [PubMed] [Google Scholar]
  16. Nelson T. E., Austin K. L., Denborough M. A. Screening for malignant hyperpyrexia. Br J Anaesth. 1977 Feb;49(2):169–172. doi: 10.1093/bja/49.2.169. [DOI] [PubMed] [Google Scholar]
  17. Okumura F., Crocker B. D., Denborough M. A. Site of the muscle cell abnormality in swine susceptible to malignant hyperpyrexia. Br J Anaesth. 1980 Apr;52(4):377–383. doi: 10.1093/bja/52.4.377. [DOI] [PubMed] [Google Scholar]
  18. PAYNE J. P., MAPLESON W. W., BUTLER R. A. The circulatory effects of halothane. Proc R Soc Med. 1963 Feb;56:92–96. doi: 10.1177/003591576305600207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tallarida R. J., Sevy R. W., Harakal C., Bendrick J., Faust R. The effect of preload on the dissociation constant of norepinephrine in isolated strips of rabbit thoracic aorta. Arch Int Pharmacodyn Ther. 1974 Jul;210(1):67–74. [PubMed] [Google Scholar]
  20. WALKER J. A., EGGERS G. W., Jr, ALLEN C. R. Cardiovascular effects of methoxyflurane anesthesia in man. Anesthesiology. 1962 Sep-Oct;23:639–642. doi: 10.1097/00000542-196209000-00007. [DOI] [PubMed] [Google Scholar]

Articles from Canadian Journal of Veterinary Research are provided here courtesy of Canadian Veterinary Medical Association

RESOURCES