Abstract
The cardiopulmonary effects of a halothane/oxygen combination were studied in eight cats subjected to a 25% whole blood volume loss. Test parameters included cardiac output measured via thermodilution, heart rate, respiratory rate, arterial blood pressure (systolic, diastolic and mean) and blood gas analysis. Values for cardiac index, stroke volume and systemic vascular resistance were calculated from these data. Posthemorrhage cardiac output, cardiac index, stroke volume and measurements of arterial blood pressure were significantly decreased (p less than 0.05). Heart rate remained unchanged. Following induction of halothane anesthesia the above parameters experienced a further significant decline (p less than 0.05) from their immediate preanesthetic (i.e. posthemorrhage) values. Heart rate also significantly decreased (p less than 0.05). Thirty minutes following the cessation of halothane anesthesia these values returned to near-hemorrhage levels, being above their respective preanesthetic values. Systemic vascular resistance initially rose, peaking ten minutes into halothane anesthesia, before gradually falling to prehemorrhage values at the end of halothane anesthesia. Following hemorrhage, respiratory rate demonstrated a transient increase, associated with an arterial CO2 tension fall, before returning to initial values at the preanesthetic time. During halothane anesthesia respiratory rate remained unchanged whereas arterial CO2 tension rose significantly (p less than 0.05) and pH declined slightly from preanesthetic readings. These returned to prehemorrhage values 30 minutes following the cessation of halothane anesthesia.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen D. G., Dyson D. H., Pascoe P. J., O'Grady M. R. Evaluation of a xylazine-ketamine hydrochloride combination in the cat. Can J Vet Res. 1986 Jan;50(1):23–26. [PMC free article] [PubMed] [Google Scholar]
- Allen D. G., Nymeyer D. A preliminary investigation on the use of thermodilution and echocardiography as an assessment of cardiac function in the cat. Can J Comp Med. 1983 Apr;47(2):112–117. [PMC free article] [PubMed] [Google Scholar]
- Altura B. M., Altura B. T., Carella A., Turlapaty P. D., Weinberg J. Vascular smooth muscle and general anesthetics. Fed Proc. 1980 Apr;39(5):1584–1591. [PubMed] [Google Scholar]
- Bahlman S. H., Eger E. I., 2nd, Halsey M. J., Stevens W. C., Shakespeare T. F., Smith N. T., Cromwell T. H., Fourcade H. The cardiovascular effects of halothane in man during spontaneous ventilation. Anesthesiology. 1972 May;36(5):494–502. doi: 10.1097/00000542-197205000-00017. [DOI] [PubMed] [Google Scholar]
- Braunwald E. Regulation of the circulation. I. N Engl J Med. 1974 May 16;290(20):1124–1129. doi: 10.1056/NEJM197405162902008. [DOI] [PubMed] [Google Scholar]
- Breznock E. M., Strack D. Blood volume of nonsplenectomized and splenectomized cats before and after acute hemorrhage. Am J Vet Res. 1982 Oct;43(10):1811–1814. [PubMed] [Google Scholar]
- Chien S. Role of the sympathetic nervous system in hemorrhage. Physiol Rev. 1967 Apr;47(2):214–288. doi: 10.1152/physrev.1967.47.2.214. [DOI] [PubMed] [Google Scholar]
- Clark D. R. Circulatory shock: etiology and pathophysiology. J Am Vet Med Assoc. 1979 Jul 1;175(1):78–81. [PubMed] [Google Scholar]
- Corbett T. H. Pharmacology and toxicology of halogenated anesthetics. Adv Pharmacol Chemother. 1979;16:195–212. doi: 10.1016/s1054-3589(08)60245-8. [DOI] [PubMed] [Google Scholar]
- Cullen D. J., Eger E. I., 2nd Cardiovascular effects of carbon dioxide in man. Anesthesiology. 1974 Oct;41(4):345–349. doi: 10.1097/00000542-197410000-00006. [DOI] [PubMed] [Google Scholar]
- Duke P. C., Fownes D., Wade J. G. Halothane depresses baroreflex control of heart rate in man. Anesthesiology. 1977 Mar;46(3):184–187. doi: 10.1097/00000542-197703000-00005. [DOI] [PubMed] [Google Scholar]
- Gustafsson D., Hillman J., Lundvall J. Influences on central hemodynamics in hemorrhage of beta 2-adrenergic vascular control mechanisms. Acta Physiol Scand. 1982 Oct;116(2):181–188. doi: 10.1111/j.1748-1716.1982.tb07128.x. [DOI] [PubMed] [Google Scholar]
- HADDY F. J., SCOTT J. B., MOLNAR J. I. MECHANISM OF VOLUME REPLACEMENT AND VASCULAR CONSTRICTION FOLLOWING HEMORRHAGE. Am J Physiol. 1965 Jan;208:169–181. doi: 10.1152/ajplegacy.1965.208.1.169. [DOI] [PubMed] [Google Scholar]
- Hillman J., Gustafsson D., Lundvall J. beta 2-Adrenergic control of plasma volume in hemorrhage. Acta Physiol Scand. 1982 Oct;116(2):175–180. doi: 10.1111/j.1748-1716.1982.tb07127.x. [DOI] [PubMed] [Google Scholar]
- Hillman J., Lundvall J. Hormonal and neurogenic adrenergic control of the fluid transfer from skeletal muscle to blood during hemorrhage. Acta Physiol Scand. 1981 Jul;112(3):271–280. doi: 10.1111/j.1748-1716.1981.tb06816.x. [DOI] [PubMed] [Google Scholar]
- Ingwersen W., Allen D. G., Dyson D. H., Pascoe P. J., O'Grady M. R. Cardiopulmonary effects of a halothane/oxygen combination in healthy cats. Can J Vet Res. 1988 Jul;52(3):386–391. [PMC free article] [PubMed] [Google Scholar]
- Järhult J., Lundvall J., Mellander S., Tibblin S. Osmolar control of plasma volume during hemorrhagic hypotension. Acta Physiol Scand. 1972 May;85(1):142–144. doi: 10.1111/j.1748-1716.1972.tb05245.x. [DOI] [PubMed] [Google Scholar]
- Longnecker D. E., Harris P. D. Microcirculatory actions of general anesthetics. Fed Proc. 1980 Apr;39(5):1580–1583. [PubMed] [Google Scholar]
- Muir W. W. Anesthesia and the heart. J Am Vet Med Assoc. 1977 Jul 1;171(1):92–98. [PubMed] [Google Scholar]
- Nadeau R. A., Colebatch H. J. Normal respiratory and circulatory values in the cat. J Appl Physiol. 1965 Sep;20(5):836–838. doi: 10.1152/jappl.1965.20.5.836. [DOI] [PubMed] [Google Scholar]
- Wong D. H., Jenkins L. C. The cardiovascular effects of ketamine in hypotensive states. Can Anaesth Soc J. 1975 May;22(3):339–348. doi: 10.1007/BF03004843. [DOI] [PubMed] [Google Scholar]
