Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1989 Apr;163:67–73.

The lung of the emu, Dromaius novaehollandiae: a microscopic and morphometric study.

J N Maina 1, A S King 1
PMCID: PMC1256516  PMID: 2606782

Abstract

Qualitative and quantitative characteristics suggest that the lung of the emu is poorly adapted for gas exchange when compared with that of other birds. The granular epithelial cells extend over the air capillaries, and the squamous epithelial cells have microvilli indicating a poor differentiation of the epithelium of the exchange tissue. The surface area of the blood-gas tissue barrier per unit body mass was only 5.4 cm2/g, the volume of the pulmonary capillary blood per unit body mass was only 0.93 cm3/kg, and the tissue barrier was unusually thick (0.232 micron). These parameters produce a relatively small total morphometric pulmonary diffusing capacity for oxygen of 0.014 ml O2/sec/mbar/kg. The findings conform to the evolution of a very large flightless bird in a warm environment lacking effective predators.

Full text

PDF
67

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdalla M. A., Maina J. N., King A. S., King D. Z., Henry J. Morphometrics of the avian lung. 1. The domestic fowl (Gallus gallus variant domesticus). Respir Physiol. 1982 Mar;47(3):267–278. doi: 10.1016/0034-5687(82)90057-3. [DOI] [PubMed] [Google Scholar]
  2. Crawford E. C., Jr, Schmidt-Nielsen K. Temperature regulation and evaporative cooling in the ostrich. Am J Physiol. 1967 Feb;212(2):347–353. doi: 10.1152/ajplegacy.1967.212.2.347. [DOI] [PubMed] [Google Scholar]
  3. Dubach M. Quantitative analysis of the respiratory system of the house sparrow, budgerigar and violet-eared hummingbird. Respir Physiol. 1981 Oct;46(1):43–60. doi: 10.1016/0034-5687(81)90067-0. [DOI] [PubMed] [Google Scholar]
  4. Duncker H. R. Structure of avian lungs. Respir Physiol. 1972 Mar;14(1):44–63. doi: 10.1016/0034-5687(72)90016-3. [DOI] [PubMed] [Google Scholar]
  5. Goniakowska-Witalińska L. Ultrastructural and morphometric study of the lung of the European salamander, Salamandra salamandra L. Cell Tissue Res. 1978 Jul 27;191(2):343–356. doi: 10.1007/BF00222429. [DOI] [PubMed] [Google Scholar]
  6. Grubb B., Jorgensen D. D., Conner M. Cardiovascular changes in the exercising emu. J Exp Biol. 1983 May;104:193–201. doi: 10.1242/jeb.104.1.193. [DOI] [PubMed] [Google Scholar]
  7. Jones J. H., Grubb B., Schmidt-Nielsen K. Panting in the emu causes arterial hypoxemia. Respir Physiol. 1983 Nov;54(2):189–195. doi: 10.1016/0034-5687(83)90056-7. [DOI] [PubMed] [Google Scholar]
  8. Jones J. H. Pulmonary blood flow distribution in panting ostriches. J Appl Physiol Respir Environ Exerc Physiol. 1982 Dec;53(6):1411–1417. doi: 10.1152/jappl.1982.53.6.1411. [DOI] [PubMed] [Google Scholar]
  9. Maina J. N., Abdalla M. A., King A. S. Light microscopic morphometry of the lung of 19 avian species. Acta Anat (Basel) 1982;112(3):264–270. doi: 10.1159/000145519. [DOI] [PubMed] [Google Scholar]
  10. Maina J. N., King A. S. A morphometric study of the lung of a Humboldt penguin (Sphenicus humboldti). Anat Histol Embryol. 1987 Dec;16(4):293–297. [PubMed] [Google Scholar]
  11. Maina J. N., King A. S. Morphometrics of the avian lung. 2. The wild mallard (Anas platyrhynchos) and graylag goose (Anser anser). Respir Physiol. 1982 Dec;50(3):299–310. doi: 10.1016/0034-5687(82)90025-1. [DOI] [PubMed] [Google Scholar]
  12. Maina J. N., King A. S. The thickness of avian blood-gas barrier: qualitative and quantitative observations. J Anat. 1982 May;134(Pt 3):553–562. [PMC free article] [PubMed] [Google Scholar]
  13. Maina J. N. Morphometrics of the avian lung. 3. The structural design of the passerine lung. Respir Physiol. 1984 Mar;55(3):291–307. doi: 10.1016/0034-5687(84)90052-5. [DOI] [PubMed] [Google Scholar]
  14. Maina J. N. Morphometrics of the avian lung. 4. The structural design of the charadriiform lung. Respir Physiol. 1987 Apr;68(1):99–119. doi: 10.1016/0034-5687(87)90080-6. [DOI] [PubMed] [Google Scholar]
  15. Meban C. The pneumonocytes in the lung of Xenopus laevis. J Anat. 1973 Feb;114(Pt 2):235–244. [PMC free article] [PubMed] [Google Scholar]
  16. Nguyen Phu D., Yamaguchi K., Scheid P., Piiper J. Kinetics of oxygen uptake and release by red blood cells of chicken and duck. J Exp Biol. 1986 Sep;125:15–27. doi: 10.1242/jeb.125.1.15. [DOI] [PubMed] [Google Scholar]
  17. Scherle W. A simple method for volumetry of organs in quantitative stereology. Mikroskopie. 1970 Jun;26(1):57–60. [PubMed] [Google Scholar]
  18. Weibel E. R. Morphometric estimation of pulmonary diffusion capacity. I. Model and method. Respir Physiol. 1970;11(1):54–75. doi: 10.1016/0034-5687(70)90102-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES