Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1989 Oct;166:1–6.

Microtubules and their relationships with other cytoskeletal components at cholinergic tectal synapses in culture.

M M Bird 1
PMCID: PMC1256734  PMID: 2621129

Abstract

Cholinergic synapses (identified by selective staining with tannic acid) of explant cultures of avian optic tectum were examined by electron microscopy after exposure of the cultures to a microtubule-stabilising drug, Taxol. The presynaptic components of such synapses commonly contained microtubules but they were never in close association with the presynaptic specialisation. Postsynaptically, microtubules commonly ran into, or close to, the postsynaptic density and/or were linked to it by 3-5 nm filaments, which, along with other filamentous cytoskeletal elements, were a prominent feature of tannic acid-stained cholinergic synapses. This study also provided some evidence that acetylcholine receptors may be present in both presynaptic and postsynaptic membranes at early stages of synapse formation and in the postsynaptic membrane alone at later stages.

Full text

PDF
1

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernhardt R., Matus A. Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons. J Comp Neurol. 1984 Jun 20;226(2):203–221. doi: 10.1002/cne.902260205. [DOI] [PubMed] [Google Scholar]
  2. Bird M. M. Microtubule--synaptic vesicle associations in cultured rat spinal cord neurons. Cell Tissue Res. 1976 Apr 28;168(1):101–115. doi: 10.1007/BF00219727. [DOI] [PubMed] [Google Scholar]
  3. Bird M. M. Regions of putative acetylcholine receptors at synaptic contacts between neurons maintained in culture and subsequently fixed in solutions containing tannic acid. Cell Tissue Res. 1984;235(1):85–89. doi: 10.1007/BF00213727. [DOI] [PubMed] [Google Scholar]
  4. Bird M. M. The effects of taxol on embryonic chick tectum maintained in culture: an electron microscope study. J Ultrastruct Res. 1984 Nov;89(2):123–135. doi: 10.1016/s0022-5320(84)80009-x. [DOI] [PubMed] [Google Scholar]
  5. Gray E. G., Burgoyne R. D., Westrum L. E., Cumming R., Barron J. The enigma of microtubule coils in brain synaptosomes. Proc R Soc Lond B Biol Sci. 1982 Nov 22;216(1205):385–396. doi: 10.1098/rspb.1982.0082. [DOI] [PubMed] [Google Scholar]
  6. Gray E. G. Presynaptic microtubules and their association with synaptic vesicles. Proc R Soc Lond B Biol Sci. 1975 Aug 19;190(1100):367–372. [PubMed] [Google Scholar]
  7. Ichimura T., Hashimoto P. H. Structural components in the synaptic cleft captured by freeze-substitution and deep etching of directly frozen cerebellar cortex. J Neurocytol. 1988 Feb;17(1):3–12. doi: 10.1007/BF01735373. [DOI] [PubMed] [Google Scholar]
  8. Masurovsky E. B., Peterson E. R., Crain S. M., Horwitz S. B. Microtubule arrays in taxol-treated mouse dorsal root ganglion-spinal cord cultures. Brain Res. 1981 Aug 3;217(2):392–398. doi: 10.1016/0006-8993(81)90017-2. [DOI] [PubMed] [Google Scholar]
  9. Matus A., Riederer B. Microtubule-associated proteins in the developing brain. Ann N Y Acad Sci. 1986;466:167–179. doi: 10.1111/j.1749-6632.1986.tb38393.x. [DOI] [PubMed] [Google Scholar]
  10. Peng H. B. Cytoskeletal organization of the presynaptic nerve terminal and the acetylcholine receptor cluster in cell cultures. J Cell Biol. 1983 Aug;97(2):489–498. doi: 10.1083/jcb.97.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sealock R. Cytoplasmic surface structure in postsynaptic membranes from electric tissue visualized by tannic-acid-mediated negative contrasting. J Cell Biol. 1982 Feb;92(2):514–522. doi: 10.1083/jcb.92.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sealock R. Identification of regions of high acetylcholine receptor density in tannic acid-fixed postsynaptic membranes from electric tissue. Brain Res. 1980 Oct 20;199(2):267–281. doi: 10.1016/0006-8993(80)90689-7. [DOI] [PubMed] [Google Scholar]
  13. Sealock R. Visualization at the mouse neuromuscular junction of a submembrane structure in common with Torpedo postsynaptic membranes. J Neurosci. 1982 Jul;2(7):918–923. doi: 10.1523/JNEUROSCI.02-07-00918.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Siekevitz P. The postsynaptic density: a possible role in long-lasting effects in the central nervous system. Proc Natl Acad Sci U S A. 1985 May;82(10):3494–3498. doi: 10.1073/pnas.82.10.3494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Westrum L. E., Gray E. G. New observations on the substructure of the active zone of brain synapses and motor endplates. Proc R Soc Lond B Biol Sci. 1986 Oct 22;229(1254):29–38. doi: 10.1098/rspb.1986.0072. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES