Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2025 Oct 9;81(Pt 11):1004–1007. doi: 10.1107/S2056989025008709

Crystal structure and Hirshfeld surface analysis of 1,3,3-trimethyl-2,6-di­phenyl­piperidin-4-yl 2-phenyl­prop-2-enoate

Aranganathan Ananthabharathi a, Sekar Janarthanan a, Mannathusamy Gopalakrishnan a, Srinivasan Pazhamalai a,*, Sivashanmugam Selvanayagam b,
Editor: M Weilc
PMCID: PMC12589840  PMID: 41209643

The title compound is a multi-substituted piperidine derivative in which the piperidine ring adopts a chair conformation.

Keywords: piperidine derivative, inter­molecular hydrogen bonds, crystal structure

Abstract

The title compound, C29H31NO2, is a multi-substituted piperidine derivative in which the piperidine ring adopts a chair conformation. Inter­molecular C—H⋯O hydrogen bonds as well as C—H⋯π inter­actions are observed in the crystal, leading to the formation of inversion dimers and chains, respectively. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis, revealing that H⋯H inter­actions contribute the most (70.5%) to the crystal packing.

1. Chemical context

Compounds with piperidine-based scaffolds represent an important class of nitro­gen heterocycles, occurring widely in natural alkaloids and serving as versatile building blocks in medicinal chemistry due to their wide-ranging pharmacological importance. Examples are arecoline and pethidine. Moreover, piperidine derivatives show therapeutic properties as anti-cancer, anti­microbial, analgesic, anti-inflammatory, or anti­psychotic agents (Abdelshaheed et al., 2021). Structural modifications on the piperidine framework often modulate biological activity, lipophilicity, and supra­molecular inter­actions, making them valuable targets for both medicinal and crystallographic studies (Mitra et al., 2022; Grover et al., 2023).1.

In the context of piperidine frameworks given above, we synthesized the title compound, (I), C29H31NO2, and report here its mol­ecular and crystal structures, as well as the results of a Hirshfeld surface analysis.

2. Structural commentary

The mol­ecular structure of (I) is shown in Fig. 1. The C13=O2 [1.198 (2) Å] and C14=C15 [1.319 (2) Å] bond lengths confirm the double-bond character. The piperidine ring (N1/C1–C5) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) of q2 = 0.101 (2) Å, q3 = −0.553 (2) Å, QT = 0.562 (2) Å, θ = 169.7 (2)° and φ = 24.4 (9)°. Atoms C1 and C4 deviate by 0.574 (2) and −0.726 (1) Å, respectively, from the least-squares plane through the remaining four atoms (N1/C2/C3/C5) of the ring. The mean plane calculation of the prop-2-enoic acid moiety (O1/C13/O2/C14/C15) reveals that atoms C15 and C14 deviate by −0.050 (2) and 0.038 (2) Å, respectively, from the plane. This moiety makes a dihedral angle of 54.1 (1)° with respect to the attached phenyl ring (C16–C21). The two other phenyl rings (C7–C12 and C24–C29) subtend a dihedral angle of 26.6 (1)°.

Figure 1.

Figure 1

The mol­ecular structure of compound (I), showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Intra­molecular short contacts are shown as dashed lines.

3. Supra­molecular features

In the crystal, mol­ecules associate pairwise via C18—H18⋯O2i hydrogen bonds (Table 1) into inversion dimers with an Inline graphic(14) graph-set motif (Etter et al., 1990; Bernstein et al., 1995), as shown in Fig. 2. In addition, mol­ecules are linked into a C(5) chain motif by C—H⋯π inter­actions, C15—H15ACg, where Cg is the centroid of the C16–C21 benzene ring of the symmetry-related mol­ecules at x, y + 1, z (Table 1). These C(5) chains run in a parallel manner along the [010] direction (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C16–C21 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O2i 0.93 2.55 3.473 (3) 170
C15—H15ACgii 0.93 2.94 3.613 (2) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

The formation of an inversion dimer through C—H⋯O hydrogen bonds in the crystal structure of (I). [Symmetry code: (a) −x, −y − 1, −z.]

Figure 3.

Figure 3

The crystal packing of (I). Inter­molecular C—H⋯π inter­actions are shown as dashed lines. For clarity, H atoms not involved in these inter­actions have been omitted.

4. Hirshfeld surface analysis

In order to further characterize and qu­antify the inter­molecular inter­actions in the title compound, a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer (Spackman et al., 2021). The HS mapped over dnorm is illustrated in Fig. 4 where the deep-red spots at O2 and H18 are indicative of the inter­molecular C—H⋯O hydrogen bonds discussed in the previous section.

Figure 4.

Figure 4

A view of the Hirshfeld surface mapped over dnorm for compound (I).

The associated two-dimensional fingerprint plots (McKinnon et al., 2007) provide qu­anti­tative information about the non-covalent inter­actions in the crystal packing in terms of the percentage contribution of the inter­atomic contacts (Spackman & McKinnon, 2002). As shown in Fig. 5, the overall two-dimensional fingerprint plot for compound (I) is delineated in H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and C⋯C contacts, revealing that H⋯H and H⋯C/C⋯H are the main contributors to the crystal packing.

Figure 5.

Figure 5

Two-dimensional fingerprint plots for compound (I), showing all inter­actions, and delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and C⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Synthesis and crystallization

>A solution of 1,3,3-trimethyl-2,6-di­phenyl­piperidin-4-ol (0.5 g), tropic acid (0.29 g), N,N′-di­cyclo­hexyl­carbodi­imide (0.74 g) and N,N-di­methyl­amino­pyridine 0.25 g) in dry di­chloro­methane (30 ml) was refluxed at 313 K for 6–8 h. After filtration, the organic layer was washed with aqueous NaHCO3 (10%wt) and brine. The combined organic layer was then concentrated under reduced pressure. The crude ester was purified by column chromatography (silica gel 100–200 mesh, petroleum ether/ethyl acetate v:v 9:1) and recrystallized from aceto­nitrile solution (99%), affording colourless crystals of the title compound [see Jordan et al., 2021) for the synthesis procedure for esterification by using DCC and DMAP catalysts].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in idealized positions and allowed to ride on their parent atoms: C—H = 0.93–0.98 Å, with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C29H31NO2
M r 425.55
Crystal system, space group Monoclinic, P21/c
Temperature (K) 300
a, b, c (Å) 13.2165 (8), 5.8983 (4), 31.503 (2)
β (°) 99.174 (2)
V3) 2424.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.36 × 0.22 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.975, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 43823, 6019, 4053
R int 0.041
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.168, 1.03
No. of reflections 6019
No. of parameters 290
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.20

Computer programs: APEX3 and SAINT (Bruker, 2017), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989025008709/wm5771sup1.cif

e-81-01004-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025008709/wm5771Isup2.hkl

e-81-01004-Isup2.hkl (478.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989025008709/wm5771Isup3.cml

CCDC reference: 2493059

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Single Crystal XRD Facility at VIT, Vellore, Tamil Nadu, India, for providing the instrumentation and support necessary for this study.

supplementary crystallographic information

1,3,3-Trimethyl-2,6-diphenylpiperidin-4-yl 2-phenylprop-2-enoate. Crystal data

C29H31NO2 F(000) = 912
Mr = 425.55 Dx = 1.166 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.2165 (8) Å Cell parameters from 9887 reflections
b = 5.8983 (4) Å θ = 2.8–27.9°
c = 31.503 (2) Å µ = 0.07 mm1
β = 99.174 (2)° T = 300 K
V = 2424.4 (3) Å3 Block, colourless
Z = 4 0.36 × 0.22 × 0.16 mm

1,3,3-Trimethyl-2,6-diphenylpiperidin-4-yl 2-phenylprop-2-enoate. Data collection

Bruker APEXII CCD diffractometer 4053 reflections with I > 2σ(I)
Radiation source: i-mu-s microfocus source Rint = 0.041
ω and φ scans θmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −17→17
Tmin = 0.975, Tmax = 0.988 k = −7→7
43823 measured reflections l = −41→42
6019 independent reflections

1,3,3-Trimethyl-2,6-diphenylpiperidin-4-yl 2-phenylprop-2-enoate. Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0655P)2 + 0.7185P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.168 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.18 e Å3
6019 reflections Δρmin = −0.20 e Å3
290 parameters Extinction correction: SHELXL (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0181 (18)

1,3,3-Trimethyl-2,6-diphenylpiperidin-4-yl 2-phenylprop-2-enoate. Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1,3,3-Trimethyl-2,6-diphenylpiperidin-4-yl 2-phenylprop-2-enoate. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.03926 (8) 0.06917 (18) 0.11420 (4) 0.0611 (3)
O2 0.01154 (12) −0.2824 (2) 0.08983 (5) 0.0893 (5)
N1 0.32017 (9) 0.0625 (2) 0.20033 (4) 0.0513 (3)
C1 0.32010 (12) −0.0081 (3) 0.15561 (5) 0.0552 (4)
H1 0.324364 −0.173859 0.154789 0.066*
C2 0.22312 (12) 0.0663 (3) 0.12589 (5) 0.0588 (4)
H2A 0.223440 0.229827 0.122584 0.071*
H2B 0.221726 −0.001316 0.097742 0.071*
C3 0.12920 (11) −0.0044 (3) 0.14390 (5) 0.0522 (4)
H3 0.128246 −0.169932 0.146411 0.063*
C4 0.12649 (11) 0.1003 (2) 0.18778 (5) 0.0496 (4)
C5 0.22462 (10) 0.0116 (2) 0.21721 (5) 0.0485 (3)
H5 0.218782 −0.153685 0.218778 0.058*
C6 0.40668 (12) −0.0499 (3) 0.22744 (6) 0.0677 (5)
H6A 0.408156 −0.006072 0.256875 0.101*
H6B 0.398667 −0.211382 0.224883 0.101*
H6C 0.469652 −0.005757 0.218237 0.101*
C7 0.41087 (12) 0.0892 (3) 0.13812 (6) 0.0631 (4)
C8 0.44879 (16) −0.0219 (5) 0.10551 (7) 0.0933 (7)
H8 0.422477 −0.162846 0.096242 0.112*
C9 0.5256 (2) 0.0747 (8) 0.08650 (9) 0.1305 (13)
H9 0.549227 −0.000456 0.064059 0.157*
C10 0.5670 (2) 0.2776 (8) 0.10007 (11) 0.1260 (13)
H10 0.619400 0.339895 0.087301 0.151*
C11 0.53136 (18) 0.3897 (5) 0.13259 (10) 0.1038 (8)
H11 0.559606 0.528631 0.142098 0.125*
C12 0.45310 (15) 0.2967 (4) 0.15145 (7) 0.0782 (6)
H12 0.428654 0.374833 0.173367 0.094*
C13 −0.01149 (11) −0.0858 (3) 0.08867 (5) 0.0518 (4)
C14 −0.10124 (11) 0.0090 (3) 0.05961 (5) 0.0525 (4)
C15 −0.12826 (15) 0.2228 (3) 0.06286 (6) 0.0742 (5)
H15A −0.185104 0.279718 0.044785 0.089*
H15B −0.090481 0.316592 0.083223 0.089*
C16 −0.15837 (12) −0.1489 (3) 0.02779 (5) 0.0564 (4)
C17 −0.10977 (16) −0.2729 (4) −0.00014 (5) 0.0708 (5)
H17 −0.039023 −0.262514 0.001575 0.085*
C18 −0.1648 (2) −0.4116 (4) −0.03050 (7) 0.0958 (8)
H18 −0.130994 −0.493464 −0.049229 0.115*
C19 −0.2677 (3) −0.4298 (5) −0.03334 (8) 0.1134 (10)
H19 −0.304484 −0.523105 −0.054083 0.136*
C20 −0.3175 (2) −0.3114 (6) −0.00582 (9) 0.1157 (10)
H20 −0.388066 −0.325807 −0.007462 0.139*
C21 −0.26323 (14) −0.1701 (5) 0.02451 (7) 0.0876 (7)
H21 −0.297792 −0.088081 0.042958 0.105*
C22 0.03109 (12) 0.0142 (3) 0.20437 (6) 0.0672 (5)
H22A 0.028268 0.078936 0.232114 0.101*
H22B −0.028940 0.057586 0.184710 0.101*
H22C 0.033936 −0.148016 0.206701 0.101*
C23 0.12310 (14) 0.3598 (3) 0.18558 (6) 0.0634 (4)
H23A 0.121449 0.420168 0.213756 0.095*
H23B 0.182901 0.414792 0.175117 0.095*
H23C 0.062811 0.406964 0.166470 0.095*
C24 0.23188 (12) 0.1029 (3) 0.26259 (5) 0.0561 (4)
C25 0.19071 (14) −0.0174 (4) 0.29329 (6) 0.0799 (6)
H25 0.161466 −0.158856 0.286507 0.096*
C26 0.19262 (19) 0.0714 (7) 0.33434 (8) 0.1145 (11)
H26 0.162999 −0.008895 0.354612 0.137*
C27 0.2381 (2) 0.2771 (8) 0.34496 (9) 0.1189 (12)
H27 0.239505 0.335912 0.372438 0.143*
C28 0.2812 (2) 0.3951 (5) 0.31534 (8) 0.0972 (8)
H28 0.312974 0.533335 0.322796 0.117*
C29 0.27811 (15) 0.3109 (3) 0.27429 (6) 0.0705 (5)
H29 0.307183 0.393851 0.254201 0.085*

1,3,3-Trimethyl-2,6-diphenylpiperidin-4-yl 2-phenylprop-2-enoate. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0508 (6) 0.0468 (6) 0.0766 (7) 0.0009 (5) −0.0178 (5) −0.0037 (5)
O2 0.1007 (10) 0.0557 (8) 0.0928 (10) 0.0142 (7) −0.0415 (8) −0.0174 (7)
N1 0.0407 (6) 0.0533 (7) 0.0568 (7) −0.0003 (5) −0.0017 (5) 0.0011 (6)
C1 0.0486 (8) 0.0503 (9) 0.0638 (9) 0.0032 (7) 0.0002 (7) −0.0031 (7)
C2 0.0496 (8) 0.0642 (10) 0.0588 (9) 0.0016 (7) −0.0033 (7) −0.0036 (8)
C3 0.0428 (7) 0.0413 (8) 0.0664 (9) 0.0017 (6) −0.0098 (6) −0.0019 (7)
C4 0.0417 (7) 0.0390 (7) 0.0645 (9) −0.0008 (6) −0.0020 (6) −0.0011 (6)
C5 0.0431 (7) 0.0375 (7) 0.0622 (8) −0.0021 (6) 0.0000 (6) 0.0019 (6)
C6 0.0457 (8) 0.0804 (12) 0.0723 (11) 0.0086 (8) −0.0046 (7) 0.0084 (9)
C7 0.0442 (8) 0.0781 (12) 0.0647 (10) 0.0083 (8) 0.0020 (7) 0.0031 (9)
C8 0.0619 (11) 0.133 (2) 0.0858 (14) 0.0136 (13) 0.0135 (10) −0.0206 (14)
C9 0.0649 (15) 0.236 (4) 0.0952 (18) 0.021 (2) 0.0280 (13) −0.007 (2)
C10 0.0565 (14) 0.212 (4) 0.111 (2) 0.0020 (19) 0.0203 (14) 0.056 (2)
C11 0.0638 (13) 0.116 (2) 0.131 (2) −0.0098 (13) 0.0130 (14) 0.0376 (17)
C12 0.0596 (10) 0.0799 (14) 0.0959 (14) −0.0054 (10) 0.0141 (10) 0.0095 (11)
C13 0.0477 (8) 0.0516 (9) 0.0535 (8) −0.0001 (7) −0.0004 (6) −0.0047 (7)
C14 0.0441 (7) 0.0599 (9) 0.0520 (8) 0.0031 (7) 0.0030 (6) 0.0002 (7)
C15 0.0654 (11) 0.0712 (12) 0.0792 (12) 0.0136 (9) −0.0098 (9) −0.0016 (10)
C16 0.0502 (8) 0.0694 (10) 0.0462 (8) 0.0009 (7) −0.0027 (6) 0.0016 (7)
C17 0.0755 (12) 0.0803 (13) 0.0535 (9) 0.0080 (10) 0.0012 (8) −0.0048 (9)
C18 0.126 (2) 0.0941 (16) 0.0582 (11) 0.0157 (15) −0.0134 (12) −0.0170 (11)
C19 0.130 (2) 0.113 (2) 0.0787 (15) −0.0208 (18) −0.0422 (15) −0.0145 (14)
C20 0.0711 (14) 0.157 (3) 0.1056 (19) −0.0240 (16) −0.0276 (13) −0.0177 (19)
C21 0.0515 (10) 0.1270 (19) 0.0786 (12) −0.0030 (11) −0.0071 (9) −0.0169 (12)
C22 0.0451 (8) 0.0701 (11) 0.0842 (12) −0.0022 (8) 0.0041 (8) 0.0017 (9)
C23 0.0632 (10) 0.0438 (9) 0.0768 (11) 0.0056 (7) −0.0087 (8) −0.0018 (8)
C24 0.0465 (8) 0.0604 (10) 0.0587 (9) 0.0047 (7) 0.0001 (6) 0.0037 (7)
C25 0.0568 (10) 0.1088 (17) 0.0729 (12) 0.0005 (10) 0.0063 (9) 0.0203 (12)
C26 0.0678 (14) 0.208 (4) 0.0691 (14) 0.0195 (19) 0.0144 (11) 0.0227 (18)
C27 0.0841 (17) 0.198 (4) 0.0686 (15) 0.051 (2) −0.0054 (13) −0.030 (2)
C28 0.0943 (16) 0.1037 (18) 0.0817 (15) 0.0283 (14) −0.0223 (13) −0.0331 (13)
C29 0.0712 (11) 0.0642 (11) 0.0700 (11) 0.0039 (9) −0.0075 (9) −0.0096 (9)

1,3,3-Trimethyl-2,6-diphenylpiperidin-4-yl 2-phenylprop-2-enoate. Geometric parameters (Å, º)

O1—C13 1.3268 (18) C13—C14 1.487 (2)
O1—C3 1.4566 (17) C14—C15 1.319 (2)
O2—C13 1.198 (2) C14—C16 1.484 (2)
N1—C1 1.469 (2) C15—H15A 0.9300
N1—C6 1.471 (2) C15—H15B 0.9300
N1—C5 1.4768 (19) C16—C21 1.379 (2)
C1—C7 1.511 (2) C16—C17 1.379 (2)
C1—C2 1.526 (2) C17—C18 1.375 (3)
C1—H1 0.9800 C17—H17 0.9300
C2—C3 1.504 (2) C18—C19 1.354 (4)
C2—H2A 0.9700 C18—H18 0.9300
C2—H2B 0.9700 C19—C20 1.361 (4)
C3—C4 1.520 (2) C19—H19 0.9300
C3—H3 0.9800 C20—C21 1.380 (3)
C4—C22 1.527 (2) C20—H20 0.9300
C4—C23 1.532 (2) C21—H21 0.9300
C4—C5 1.5593 (19) C22—H22A 0.9600
C5—C24 1.516 (2) C22—H22B 0.9600
C5—H5 0.9800 C22—H22C 0.9600
C6—H6A 0.9600 C23—H23A 0.9600
C6—H6B 0.9600 C23—H23B 0.9600
C6—H6C 0.9600 C23—H23C 0.9600
C7—C8 1.378 (3) C24—C25 1.379 (3)
C7—C12 1.382 (3) C24—C29 1.394 (2)
C8—C9 1.381 (4) C25—C26 1.392 (4)
C8—H8 0.9300 C25—H25 0.9300
C9—C10 1.357 (5) C26—C27 1.372 (5)
C9—H9 0.9300 C26—H26 0.9300
C10—C11 1.365 (5) C27—C28 1.360 (4)
C10—H10 0.9300 C27—H27 0.9300
C11—C12 1.386 (3) C28—C29 1.380 (3)
C11—H11 0.9300 C28—H28 0.9300
C12—H12 0.9300 C29—H29 0.9300
C13—O1—C3 117.78 (12) O2—C13—O1 123.16 (14)
C1—N1—C6 108.09 (13) O2—C13—C14 123.83 (14)
C1—N1—C5 114.69 (11) O1—C13—C14 112.98 (13)
C6—N1—C5 109.24 (12) C15—C14—C16 122.53 (15)
N1—C1—C7 111.29 (13) C15—C14—C13 120.74 (15)
N1—C1—C2 112.27 (13) C16—C14—C13 116.73 (14)
C7—C1—C2 107.75 (14) C14—C15—H15A 120.0
N1—C1—H1 108.5 C14—C15—H15B 120.0
C7—C1—H1 108.5 H15A—C15—H15B 120.0
C2—C1—H1 108.5 C21—C16—C17 117.98 (17)
C3—C2—C1 110.60 (14) C21—C16—C14 120.31 (16)
C3—C2—H2A 109.5 C17—C16—C14 121.68 (15)
C1—C2—H2A 109.5 C18—C17—C16 120.7 (2)
C3—C2—H2B 109.5 C18—C17—H17 119.6
C1—C2—H2B 109.5 C16—C17—H17 119.6
H2A—C2—H2B 108.1 C19—C18—C17 120.5 (2)
O1—C3—C2 108.26 (13) C19—C18—H18 119.8
O1—C3—C4 109.16 (12) C17—C18—H18 119.8
C2—C3—C4 111.78 (12) C18—C19—C20 120.0 (2)
O1—C3—H3 109.2 C18—C19—H19 120.0
C2—C3—H3 109.2 C20—C19—H19 120.0
C4—C3—H3 109.2 C19—C20—C21 120.0 (2)
C3—C4—C22 108.46 (13) C19—C20—H20 120.0
C3—C4—C23 111.67 (14) C21—C20—H20 120.0
C22—C4—C23 109.15 (14) C16—C21—C20 120.8 (2)
C3—C4—C5 105.45 (12) C16—C21—H21 119.6
C22—C4—C5 109.82 (13) C20—C21—H21 119.6
C23—C4—C5 112.19 (12) C4—C22—H22A 109.5
N1—C5—C24 109.76 (12) C4—C22—H22B 109.5
N1—C5—C4 113.32 (12) H22A—C22—H22B 109.5
C24—C5—C4 111.28 (12) C4—C22—H22C 109.5
N1—C5—H5 107.4 H22A—C22—H22C 109.5
C24—C5—H5 107.4 H22B—C22—H22C 109.5
C4—C5—H5 107.4 C4—C23—H23A 109.5
N1—C6—H6A 109.5 C4—C23—H23B 109.5
N1—C6—H6B 109.5 H23A—C23—H23B 109.5
H6A—C6—H6B 109.5 C4—C23—H23C 109.5
N1—C6—H6C 109.5 H23A—C23—H23C 109.5
H6A—C6—H6C 109.5 H23B—C23—H23C 109.5
H6B—C6—H6C 109.5 C25—C24—C29 118.22 (18)
C8—C7—C12 118.1 (2) C25—C24—C5 120.39 (17)
C8—C7—C1 119.70 (19) C29—C24—C5 121.38 (15)
C12—C7—C1 122.07 (17) C24—C25—C26 120.5 (3)
C7—C8—C9 120.4 (3) C24—C25—H25 119.8
C7—C8—H8 119.8 C26—C25—H25 119.8
C9—C8—H8 119.8 C27—C26—C25 120.1 (3)
C10—C9—C8 121.0 (3) C27—C26—H26 119.9
C10—C9—H9 119.5 C25—C26—H26 119.9
C8—C9—H9 119.5 C28—C27—C26 120.0 (2)
C9—C10—C11 119.6 (3) C28—C27—H27 120.0
C9—C10—H10 120.2 C26—C27—H27 120.0
C11—C10—H10 120.2 C27—C28—C29 120.4 (3)
C10—C11—C12 120.0 (3) C27—C28—H28 119.8
C10—C11—H11 120.0 C29—C28—H28 119.8
C12—C11—H11 120.0 C28—C29—C24 120.7 (2)
C7—C12—C11 120.9 (2) C28—C29—H29 119.6
C7—C12—H12 119.6 C24—C29—H29 119.6
C11—C12—H12 119.6
C6—N1—C1—C7 −68.92 (17) C9—C10—C11—C12 −0.2 (4)
C5—N1—C1—C7 168.96 (12) C8—C7—C12—C11 −0.1 (3)
C6—N1—C1—C2 170.20 (14) C1—C7—C12—C11 −175.15 (19)
C5—N1—C1—C2 48.08 (18) C10—C11—C12—C7 0.7 (4)
N1—C1—C2—C3 −51.25 (19) C3—O1—C13—O2 2.1 (2)
C7—C1—C2—C3 −174.15 (14) C3—O1—C13—C14 −179.60 (13)
C13—O1—C3—C2 102.68 (16) O2—C13—C14—C15 173.29 (19)
C13—O1—C3—C4 −135.44 (14) O1—C13—C14—C15 −5.0 (2)
C1—C2—C3—O1 −179.58 (12) O2—C13—C14—C16 −5.9 (2)
C1—C2—C3—C4 60.16 (17) O1—C13—C14—C16 175.90 (13)
O1—C3—C4—C22 62.12 (16) C15—C14—C16—C21 −50.8 (3)
C2—C3—C4—C22 −178.14 (13) C13—C14—C16—C21 128.38 (19)
O1—C3—C4—C23 −58.19 (16) C15—C14—C16—C17 127.2 (2)
C2—C3—C4—C23 61.55 (16) C13—C14—C16—C17 −53.7 (2)
O1—C3—C4—C5 179.71 (11) C21—C16—C17—C18 0.5 (3)
C2—C3—C4—C5 −60.55 (15) C14—C16—C17—C18 −177.43 (18)
C1—N1—C5—C24 −177.09 (12) C16—C17—C18—C19 −0.4 (4)
C6—N1—C5—C24 61.42 (16) C17—C18—C19—C20 −0.4 (4)
C1—N1—C5—C4 −52.00 (17) C18—C19—C20—C21 1.0 (5)
C6—N1—C5—C4 −173.50 (13) C17—C16—C21—C20 0.1 (3)
C3—C4—C5—N1 55.93 (15) C14—C16—C21—C20 178.1 (2)
C22—C4—C5—N1 172.60 (13) C19—C20—C21—C16 −0.9 (4)
C23—C4—C5—N1 −65.83 (17) N1—C5—C24—C25 −142.18 (15)
C3—C4—C5—C24 −179.80 (12) C4—C5—C24—C25 91.57 (18)
C22—C4—C5—C24 −63.13 (17) N1—C5—C24—C29 39.07 (19)
C23—C4—C5—C24 58.43 (18) C4—C5—C24—C29 −87.18 (17)
N1—C1—C7—C8 153.59 (17) C29—C24—C25—C26 2.1 (3)
C2—C1—C7—C8 −82.9 (2) C5—C24—C25—C26 −176.69 (18)
N1—C1—C7—C12 −31.4 (2) C24—C25—C26—C27 −1.8 (3)
C2—C1—C7—C12 92.05 (19) C25—C26—C27—C28 0.2 (4)
C12—C7—C8—C9 −1.0 (3) C26—C27—C28—C29 1.0 (4)
C1—C7—C8—C9 174.1 (2) C27—C28—C29—C24 −0.7 (3)
C7—C8—C9—C10 1.6 (4) C25—C24—C29—C28 −0.9 (3)
C8—C9—C10—C11 −0.9 (5) C5—C24—C29—C28 177.91 (17)

1,3,3-Trimethyl-2,6-diphenylpiperidin-4-yl 2-phenylprop-2-enoate. Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C16–C21 phenyl ring.

D—H···A D—H H···A D···A D—H···A
C12—H12···N1 0.93 2.56 2.869 (2) 100
C3—H3···O2 0.98 2.26 2.677 (2) 104
C15—H15B···O1 0.93 2.34 2.683 (2) 101
C22—H22B···O1 0.96 2.53 2.878 (2) 102
C23—H23C···O1 0.96 2.57 2.903 (2) 100
C18—H18···O2i 0.93 2.55 3.473 (3) 170
C15—H15A···Cgii 0.93 2.94 3.613 (2) 130

Symmetry codes: (i) −x, −y−1, −z; (ii) x, y+1, z.

References

  1. Abdelshaheed, M. M., Fawzy, I. M., El-Subbagh, H. I. & Youssef, K. M. (2021). Future J. Pharm. Sci.7, 188.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  5. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst.45, 849–854.
  7. Grover, P., Rohilla, S., Bhardwaj, M., Mehta, L. & Malhotra, A. (2023). Curr. Top. Med. Chem.23, 1221–1259. [DOI] [PubMed]
  8. Jordan, A., Whymark, K. D., Sydenham, J. & Sneddon, H. F. (2021). Green Chem.23, 6405–6413.
  9. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
  10. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  11. Mitra, S., Anand, U., Jha, N. K., Shekhawat, M. S., Saha, S. C., Nongdam, P., Rengasamy, K. R. R., Proćków, J. & Dey, A. (2022). Front. Pharmacol.12, 772418. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  13. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  14. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm11, 19–32.
  15. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm4, 378–392.
  16. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
  17. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989025008709/wm5771sup1.cif

e-81-01004-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025008709/wm5771Isup2.hkl

e-81-01004-Isup2.hkl (478.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989025008709/wm5771Isup3.cml

CCDC reference: 2493059

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES