The molecule of the title compound contains a planar thieno[2,3-f]isoindole ring system and a phenyl ring. In crystal, the molecules are linked through C—H⋯O hydrogen bonds, enclosing R22(14) ring motifs, into a three-dimensional architecture. π–π interactions further consolidate the crystal structure.
Keywords: intramolecular didehydro-Diels–Alder reaction; propargylamine; IMDDA reaction; thieno[2,3-f]isoindole; crystal structure
Abstract
In the title compound, C17H11NO3S, the thieno[2,3-f]isoindole ring system and the phenyl ring are oriented at a dihedral angle of 20.57 (13)°. The strong intramolecular O—H⋯O hydrogen bond partly ensures the coplanarity of the carboxyl group and the ring system. In crystal, the molecules are linked through C—H⋯O hydrogen bonds, enclosing R22(14) ring motifs, into a three-dimensional architecture. π–π interactions between parallel five-membered and phenyl rings [centroid-to-centroid distances of 3.564 (3) and 3.591 (3) Å] further contribute to the cohesion of the crystal structure. The Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (35.5%), H⋯O/O⋯H (21.3%), C⋯C (14.1%) and H⋯C/C⋯H (12.8%) interactions.
1. Chemical context
It is widely recognized that in the field of [4 + 2]-cycloaddition chemistry, the terms diene and dienophile are not limited to compounds with only double bonds. In the Diels–Alder reaction, alkynes can also serve as dienophiles, and conjugated 1,3-diynes or 1,3-enynes can act as dienes. Such pericyclic reactions are referred in the literature as dehydro-Diels–Alder reactions (Wessig et al., 2008 ▸; Johnson, 2010 ▸; Ajaz et al., 2011 ▸; Li et al., 2016 ▸), and intramolecular dehydro-Diels–Alder (IMDDA) reactions are widely used in organic synthesis to construct polycyclic molecules (Hoye et al., 2012 ▸; Brummond et al., 2015 ▸; Wang et al., 2016 ▸; Rana et al., 2017 ▸; Krishna et al., 2022 ▸). A special case of this type of transformation is the intramolecular didehydro-Diels–Alder reaction, in which an alkene dienophile reacts with an enyne. There are only a few publications related to the intramolecular dehydro-Diels–Alder reaction of the thiophene series that demonstrate the fundamental possibility of IMDDA transformations (Klemm et al., 1965 ▸, 1966 ▸; Lu et al., 2005 ▸; Bober et al., 2017 ▸; Huang et al., 2017 ▸).
This work is a continuation of studies on the tandem acylation/[4 + 2] cycloaddition reaction between 3-(thienyl)propargylamines and maleic anhydride as an example of the IMDDA approach (Shelukho et al., 2025 ▸). Thienylpropargylamine 1 readily reacts with maleic anhydride to provide a mixture of products, where the product 2 has been published previously (Shelukho et al., 2025 ▸), but the major acid 3 could not be isolated and characterized due to the formation of a mixture of products. In this work, we successfully isolated and characterized 7-oxo-6-phenyl-6,7-dihydro-5H-thieno[2,3-f]isoindole-8-carboxylic acid, 3. The detection of acid 3 directly confirms the assumption that type 2 dihydroacid is prone to easy oxidation under aerobic conditions. Herein, we report the synthesis and molecular and crystal structure, together with the Hirshfeld surface analysis of the title compound, 3.
2. Structural commentary
The asymmetric unit of the title compound, C17H11NO3S, contains an essentially planar [r.m.s. deviation = 0.02 (4) Å] thieno[2,3-f]isoindole ring system (A; S1/C2/C3/C3A/C4/C4A/C5/N6/C7/C7A/C8/C8A), and a phenyl ring (B; C9–C14) oriented at a dihedral angle of 20.57 (13)°. The carboxyl group (C1/O2/O3/C8) is oriented at a dihedral angle of 0.22 (12)° with respect to the thieno[2,3-f]isoindole ring system. Thus, they are almost coplanar, partly as a result of the strong intramolecular O3—H3O⋯O1 hydrogen bond between the carboxyl hydrogen and isoindole oxygen atoms (Table 1 ▸, Fig. 1 ▸). On the other hand, the dihedral angle between the carboxylate group and ring B is 21.2 (4)°. Atom O1 is 0.037 (3) Å away from the best least-squares plane of the thieno[2,3-f]isoindole ring system. In the carboxylate group, the O2—C1 and O3—C1 bond lengths are 1.217 (6) and 1.303 (6) Å, respectively. Thus, the C—O bonds in the carboxylate group indicate mainly localized single and double bounds rather than a delocalized bonding arrangement. The O2—C1—O3 [120.9 (4)°] bond angle seems to be decreased compared to that present in a free acid (122.2°; Sim et al., 1955 ▸) and compares with corresponding values of 122.42 (14)° in C17H13NO2 (Refcode UYATIZ; Mague et al., 2016 ▸), 122.55 (12)° in C14H11NO3 (BIYJEC; El-Mrabet et al., 2023 ▸) and 122.70 (12)° in C12H10ClNO3 (PEDKAO; Filali Baba et al., 2022 ▸). As indicated by the O2—C1—C8—C7A [179.9 (4)°] and O3—C1—C8—C8A [179.7 (4)°] torsion angles, the carboxyl group attached to the thieno[2,3-f]isoindole ring system is in a anti peripheral conformation.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O3—H3O⋯O1 | 0.74 (8) | 1.76 (8) | 2.496 (5) | 175 (8) |
| C5—H5A⋯O2i | 0.99 | 2.37 | 3.343 (6) | 167 |
| C5—H5B⋯O2ii | 0.99 | 2.37 | 3.013 (6) | 122 |
| C11—H11⋯O1iii | 0.95 | 2.50 | 3.333 (6) | 146 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Figure 1.
The asymmetric unit of the title compound with the atom-numbering scheme and 50% probability ellipsoids.
3. Supramolecular features
In the crystal, the molecules are linked through C—H⋯O hydrogen bonds, enclosing
(14) ring motifs, into a three-dimensional architecture (Fig. 2 ▸). There are π–π interactions between the parallel five-membered (S1/C2/C3/C3A/C8A and N6/C5/C4A/C7A/C7) rings and the phenyl (C3A/C4/C4A/C7A/C8/C8A) ring with centroid-to-centroid distances of 3.564 (3) Å (α = 0.92° and slippage = 1.031 Å) and 3.591 (3) Å (α = 0.70° and slippage = 1.041 Å), respectively.
Figure 2.
A partial packing diagram of the title compound viewed down the a-axis direction. Intramolecular O—H⋯O and intermolecular C—H⋯O hydrogen bonds are shown as dashed lines. H atoms not involved in these interactions have been omitted for clarity.
4. Hirshfeld surface analysis
To visualize the intermolecular interactions, a Hirshfeld surface (HS) analysis was carried out using Crystal Explorer 17.5 (Spackman et al., 2021 ▸). In the HS plotted over dnorm (Fig. 3 ▸), the contact distances equal, shorter and longer with respect to the sum of van der Waals radii are shown in white, red and blue, respectively. According to the two-dimensional fingerprint plots, H⋯H, H⋯O/O⋯H, C⋯C and H⋯C/C⋯H contacts make the most important contributions to the HS (Fig. 4 ▸).
Figure 3.
View of the three-dimensional Hirshfeld surface plotted over dnorm.
Figure 4.
The full two-dimensional fingerprint plots showing (a) all interactions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) C⋯C, (e) H⋯C/C⋯H, (f) H⋯S/S⋯H, (g) C⋯O/O⋯C, (h) C⋯S/S⋯C, (i) C⋯N/N⋯C, (j) O⋯S/S⋯O, (k) O⋯O, (l) H⋯N/N⋯H, (m) S ⋯ S and (n) N⋯N interactions. The di and de values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.
5. Synthesis and crystallization
Maleic anhydride (61.0 mg, 0.62 mmol) was added to N-(3-(thiophen-3-yl)prop-2-ynyl)aniline (1) (132.3 mg, 0.62 mmol) diluted in PhCH3 (3 mL) at a 5 mL round-bottom flask. The resulting mixture was heated under reflux for 5 h, and then cooled to room temperature. The resulting precipitate was filtered, washed with PhMe (3 mL), Et2O (2 × 3 mL), and air dried to give acid 2 (20.0 mg, 10%) as a colourless solid (for full characteristics see Shelukho et al., 2025 ▸). After cooling mother liquor at 278 K, the precipitate was filtered, washed with mother liquor (3 mL), Et2O (2 × 3 mL), and air dried to give the title compound 3 as yellow plates (yield 49%, 96.4 mg, m.p. > 523 K). IR (KBr), ν (cm−1): 1704 (CO2), 1591 (N—C=O). 1H NMR (700.2 MHz, DMSO-d6): δ (J, Hz) 16.45 (br.s., 1H, CO2H), 8.45 (s, 1H, H-Ar), 8.18 (d, J = 5.5 Hz, 1H, H-2 Thien), 7.91 (d, J = 7.6 Hz, 2H, H-Ar), 7.70 (d, J = 5.5 Hz, 1H, H-Thien), 7.56 (t, J = 7.6 Hz, 2H, H-Ar), 7.37 (t, J = 7.6 Hz, 1H, H-Ar), 5.33 (s, 2H, NCH2) ppm. 13C {1H} NMR (176.1 MHz, DMSO-d6): δ 169.1, 165.9, 1447, 142.3, 138.6, 138.1, 136.7, 129.7 (2C), 126.9, 126.8, 123.6, 123.4, 122.6, 122.2 (2C), 52.3 ppm. MS (ESI) m/z: [M + H]+ 310. Elemental analysis calculated (%) for C17H11NO3S: C 66.01, H 3.58, N 4.53, S 10.36; found: C 65.84, H 3.49, N 4.69, S 10.17.
6. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. The hydroxy hydrogen atom was located in a difference Fourier map and refined isotropically. The C-bound hydrogen-atom positions were calculated geometrically at distances of 0.95 Å (for aromatic CH) and 0.99 Å (for CH2) and refined using a riding model by applying the constraint Uiso(H) = 1.2Ueq(C).
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C17H11NO3S |
| M r | 309.33 |
| Crystal system, space group | Monoclinic, P21/n |
| Temperature (K) | 100 |
| a, b, c (Å) | 3.89128 (10), 15.8505 (5), 21.6531 (7) |
| β (°) | 93.596 (3) |
| V (Å3) | 1332.91 (7) |
| Z | 4 |
| Radiation type | Cu Kα |
| μ (mm−1) | 2.28 |
| Crystal size (mm) | 0.13 × 0.07 × 0.02 |
| Data collection | |
| Diffractometer | Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector |
| Absorption correction | Gaussian (CrysAlis PRO; Rigaku OD, 2021 ▸). |
| Tmin, Tmax | 0.857, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 11945, 2775, 2269 |
| R int | 0.119 |
| Refinement | |
| R[F2 > 2σ(F2)], wR(F2), S | 0.097, 0.238, 1.03 |
| No. of reflections | 2775 |
| No. of parameters | 203 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.94, −0.48 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025008618/ex2095sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025008618/ex2095Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989025008618/ex2095Isup3.cml
CCDC reference: 2492514
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors’ contributions are as follows. Conceptualization, TH and MHAD; synthesis, ERS and VPZ; X-ray analysis, VNK and NAG; Hirshfeld surface analysis, TH; writing (review and editing of the manuscript), TH, KIH and TAJ; supervision, TH and MHAD.
supplementary crystallographic information
7-Oxo-6-phenyl-6,7-dihydro-5H-thieno[2,3-f]isoindole-8-carboxylic acid . Crystal data
| C17H11NO3S | F(000) = 640 |
| Mr = 309.33 | Dx = 1.541 Mg m−3 |
| Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
| a = 3.89128 (10) Å | Cell parameters from 3873 reflections |
| b = 15.8505 (5) Å | θ = 3.5–78.8° |
| c = 21.6531 (7) Å | µ = 2.28 mm−1 |
| β = 93.596 (3)° | T = 100 K |
| V = 1332.91 (7) Å3 | Plate, yellow |
| Z = 4 | 0.13 × 0.07 × 0.02 mm |
7-Oxo-6-phenyl-6,7-dihydro-5H-thieno[2,3-f]isoindole-8-carboxylic acid . Data collection
| Rigaku XtaLAB Synergy-S, HyPix-6000HE area-detector diffractometer | 2269 reflections with I > 2σ(I) |
| Radiation source: micro-focus sealed X-ray tube | Rint = 0.119 |
| φ and ω scans | θmax = 79.8°, θmin = 3.5° |
| Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2021). | h = −3→4 |
| Tmin = 0.857, Tmax = 1.000 | k = −19→19 |
| 11945 measured reflections | l = −27→27 |
| 2775 independent reflections |
7-Oxo-6-phenyl-6,7-dihydro-5H-thieno[2,3-f]isoindole-8-carboxylic acid . Refinement
| Refinement on F2 | Primary atom site location: difference Fourier map |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.097 | Hydrogen site location: mixed |
| wR(F2) = 0.238 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.03 | w = 1/[σ2(Fo2) + (0.088P)2 + 6.9P] where P = (Fo2 + 2Fc2)/3 |
| 2775 reflections | (Δ/σ)max < 0.001 |
| 203 parameters | Δρmax = 0.94 e Å−3 |
| 0 restraints | Δρmin = −0.47 e Å−3 |
7-Oxo-6-phenyl-6,7-dihydro-5H-thieno[2,3-f]isoindole-8-carboxylic acid . Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
7-Oxo-6-phenyl-6,7-dihydro-5H-thieno[2,3-f]isoindole-8-carboxylic acid . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1 | 0.1382 (3) | 0.55415 (8) | 0.87334 (5) | 0.0250 (3) | |
| O1 | 0.7474 (9) | 0.5121 (2) | 0.63096 (15) | 0.0265 (8) | |
| O2 | 0.4093 (9) | 0.6550 (2) | 0.79077 (16) | 0.0276 (8) | |
| O3 | 0.6243 (11) | 0.6318 (2) | 0.70111 (19) | 0.0332 (9) | |
| H3O | 0.671 (19) | 0.596 (5) | 0.681 (4) | 0.05 (2)* | |
| C1 | 0.4827 (12) | 0.6057 (3) | 0.7506 (2) | 0.0239 (10) | |
| C2 | −0.0144 (12) | 0.4688 (3) | 0.9129 (2) | 0.0278 (10) | |
| H2 | −0.1150 | 0.4741 | 0.9516 | 0.033* | |
| C3 | 0.0211 (12) | 0.3938 (3) | 0.8842 (2) | 0.0249 (10) | |
| H3 | −0.0494 | 0.3413 | 0.9004 | 0.030* | |
| C3A | 0.1779 (11) | 0.4030 (3) | 0.8264 (2) | 0.0216 (9) | |
| C4 | 0.2556 (11) | 0.3396 (3) | 0.7848 (2) | 0.0213 (9) | |
| H4 | 0.2094 | 0.2821 | 0.7932 | 0.026* | |
| C4A | 0.4011 (11) | 0.3632 (3) | 0.7312 (2) | 0.0181 (9) | |
| C5 | 0.5110 (12) | 0.3077 (3) | 0.6796 (2) | 0.0219 (9) | |
| H5A | 0.6944 | 0.2680 | 0.6945 | 0.026* | |
| H5B | 0.3141 | 0.2753 | 0.6607 | 0.026* | |
| N6 | 0.6397 (9) | 0.3689 (2) | 0.63574 (17) | 0.0204 (8) | |
| C7 | 0.6339 (12) | 0.4491 (3) | 0.6577 (2) | 0.0218 (9) | |
| C7A | 0.4790 (11) | 0.4474 (3) | 0.7184 (2) | 0.0205 (9) | |
| C8 | 0.4125 (11) | 0.5128 (3) | 0.7595 (2) | 0.0209 (9) | |
| C8A | 0.2606 (11) | 0.4884 (3) | 0.8140 (2) | 0.0219 (9) | |
| C9 | 0.7463 (11) | 0.3427 (3) | 0.5766 (2) | 0.0213 (9) | |
| C10 | 0.7616 (12) | 0.3990 (3) | 0.5276 (2) | 0.0272 (10) | |
| H10 | 0.7054 | 0.4567 | 0.5330 | 0.033* | |
| C11 | 0.8587 (13) | 0.3705 (3) | 0.4710 (2) | 0.0292 (11) | |
| H11 | 0.8698 | 0.4092 | 0.4377 | 0.035* | |
| C12 | 0.9398 (12) | 0.2871 (4) | 0.4619 (2) | 0.0297 (11) | |
| H12 | 1.0073 | 0.2684 | 0.4228 | 0.036* | |
| C13 | 0.9218 (13) | 0.2306 (3) | 0.5106 (2) | 0.0299 (11) | |
| H13 | 0.9781 | 0.1730 | 0.5046 | 0.036* | |
| C14 | 0.8225 (12) | 0.2572 (3) | 0.5679 (2) | 0.0249 (10) | |
| H14 | 0.8065 | 0.2180 | 0.6008 | 0.030* |
7-Oxo-6-phenyl-6,7-dihydro-5H-thieno[2,3-f]isoindole-8-carboxylic acid . Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.0238 (6) | 0.0237 (6) | 0.0280 (6) | 0.0030 (4) | 0.0046 (4) | −0.0064 (4) |
| O1 | 0.0360 (19) | 0.0144 (16) | 0.0301 (17) | −0.0061 (13) | 0.0105 (14) | 0.0027 (13) |
| O2 | 0.0290 (18) | 0.0184 (16) | 0.0359 (18) | 0.0002 (13) | 0.0047 (14) | −0.0047 (14) |
| O3 | 0.050 (2) | 0.0135 (17) | 0.038 (2) | −0.0018 (15) | 0.0152 (17) | −0.0018 (15) |
| C1 | 0.019 (2) | 0.019 (2) | 0.034 (2) | 0.0045 (17) | 0.0034 (18) | −0.0033 (18) |
| C2 | 0.025 (2) | 0.034 (3) | 0.025 (2) | 0.002 (2) | 0.0050 (18) | 0.000 (2) |
| C3 | 0.021 (2) | 0.028 (3) | 0.025 (2) | −0.0034 (19) | 0.0008 (17) | 0.0016 (19) |
| C3A | 0.016 (2) | 0.023 (2) | 0.026 (2) | 0.0028 (17) | 0.0013 (16) | −0.0021 (18) |
| C4 | 0.024 (2) | 0.016 (2) | 0.024 (2) | −0.0030 (17) | 0.0043 (17) | 0.0020 (17) |
| C4A | 0.016 (2) | 0.015 (2) | 0.024 (2) | −0.0001 (16) | 0.0024 (15) | −0.0014 (16) |
| C5 | 0.027 (2) | 0.015 (2) | 0.024 (2) | −0.0025 (17) | 0.0071 (17) | 0.0010 (17) |
| N6 | 0.0211 (19) | 0.0150 (18) | 0.0255 (19) | −0.0024 (14) | 0.0048 (14) | 0.0036 (15) |
| C7 | 0.023 (2) | 0.014 (2) | 0.029 (2) | 0.0023 (17) | 0.0051 (17) | 0.0021 (18) |
| C7A | 0.020 (2) | 0.017 (2) | 0.024 (2) | 0.0016 (17) | 0.0041 (16) | 0.0001 (17) |
| C8 | 0.018 (2) | 0.020 (2) | 0.025 (2) | 0.0016 (17) | 0.0037 (16) | −0.0037 (17) |
| C8A | 0.014 (2) | 0.023 (2) | 0.028 (2) | 0.0016 (17) | 0.0018 (16) | −0.0050 (18) |
| C9 | 0.017 (2) | 0.023 (2) | 0.025 (2) | −0.0015 (17) | 0.0050 (16) | −0.0021 (18) |
| C10 | 0.028 (3) | 0.023 (2) | 0.031 (2) | −0.0008 (19) | 0.0091 (19) | 0.003 (2) |
| C11 | 0.023 (2) | 0.035 (3) | 0.030 (2) | −0.003 (2) | 0.0088 (18) | 0.002 (2) |
| C12 | 0.023 (2) | 0.041 (3) | 0.026 (2) | −0.005 (2) | 0.0077 (18) | −0.003 (2) |
| C13 | 0.032 (3) | 0.027 (3) | 0.031 (3) | 0.002 (2) | 0.004 (2) | −0.007 (2) |
| C14 | 0.023 (2) | 0.028 (3) | 0.025 (2) | −0.0024 (19) | 0.0054 (18) | 0.0005 (19) |
7-Oxo-6-phenyl-6,7-dihydro-5H-thieno[2,3-f]isoindole-8-carboxylic acid . Geometric parameters (Å, º)
| S1—C2 | 1.726 (5) | C5—H5A | 0.9900 |
| S1—C8A | 1.745 (5) | C5—H5B | 0.9900 |
| O1—C7 | 1.249 (6) | N6—C7 | 1.358 (6) |
| O2—C1 | 1.217 (6) | N6—C9 | 1.431 (6) |
| O3—C1 | 1.303 (6) | C7—C7A | 1.479 (6) |
| O3—H3O | 0.74 (8) | C7A—C8 | 1.402 (6) |
| C1—C8 | 1.512 (7) | C8—C8A | 1.406 (6) |
| C2—C3 | 1.353 (7) | C9—C10 | 1.392 (7) |
| C2—H2 | 0.9500 | C9—C14 | 1.402 (7) |
| C3—C3A | 1.434 (6) | C10—C11 | 1.380 (7) |
| C3—H3 | 0.9500 | C10—H10 | 0.9500 |
| C3A—C4 | 1.396 (6) | C11—C12 | 1.376 (8) |
| C3A—C8A | 1.420 (7) | C11—H11 | 0.9500 |
| C4—C4A | 1.373 (6) | C12—C13 | 1.387 (8) |
| C4—H4 | 0.9500 | C12—H12 | 0.9500 |
| C4A—C7A | 1.400 (6) | C13—C14 | 1.388 (7) |
| C4A—C5 | 1.505 (6) | C13—H13 | 0.9500 |
| C5—N6 | 1.467 (6) | C14—H14 | 0.9500 |
| C2—S1—C8A | 90.9 (2) | O1—C7—C7A | 127.0 (4) |
| C1—O3—H3O | 112 (6) | N6—C7—C7A | 108.1 (4) |
| O2—C1—O3 | 120.9 (4) | C4A—C7A—C8 | 121.8 (4) |
| O2—C1—C8 | 118.8 (4) | C4A—C7A—C7 | 107.4 (4) |
| O3—C1—C8 | 120.3 (4) | C8—C7A—C7 | 130.7 (4) |
| C3—C2—S1 | 114.4 (4) | C7A—C8—C8A | 115.7 (4) |
| C3—C2—H2 | 122.8 | C7A—C8—C1 | 126.7 (4) |
| S1—C2—H2 | 122.8 | C8A—C8—C1 | 117.7 (4) |
| C2—C3—C3A | 111.9 (4) | C8—C8A—C3A | 122.3 (4) |
| C2—C3—H3 | 124.1 | C8—C8A—S1 | 127.0 (4) |
| C3A—C3—H3 | 124.1 | C3A—C8A—S1 | 110.7 (3) |
| C4—C3A—C8A | 120.1 (4) | C10—C9—C14 | 119.8 (4) |
| C4—C3A—C3 | 127.7 (4) | C10—C9—N6 | 121.7 (4) |
| C8A—C3A—C3 | 112.2 (4) | C14—C9—N6 | 118.4 (4) |
| C4A—C4—C3A | 117.9 (4) | C11—C10—C9 | 119.7 (5) |
| C4A—C4—H4 | 121.1 | C11—C10—H10 | 120.2 |
| C3A—C4—H4 | 121.1 | C9—C10—H10 | 120.2 |
| C4—C4A—C7A | 122.2 (4) | C12—C11—C10 | 121.3 (5) |
| C4—C4A—C5 | 128.3 (4) | C12—C11—H11 | 119.4 |
| C7A—C4A—C5 | 109.5 (4) | C10—C11—H11 | 119.4 |
| N6—C5—C4A | 102.7 (4) | C11—C12—C13 | 119.2 (5) |
| N6—C5—H5A | 111.2 | C11—C12—H12 | 120.4 |
| C4A—C5—H5A | 111.2 | C13—C12—H12 | 120.4 |
| N6—C5—H5B | 111.2 | C12—C13—C14 | 120.9 (5) |
| C4A—C5—H5B | 111.2 | C12—C13—H13 | 119.5 |
| H5A—C5—H5B | 109.1 | C14—C13—H13 | 119.5 |
| C7—N6—C9 | 126.7 (4) | C13—C14—C9 | 119.1 (5) |
| C7—N6—C5 | 112.2 (4) | C13—C14—H14 | 120.4 |
| C9—N6—C5 | 121.1 (4) | C9—C14—H14 | 120.4 |
| O1—C7—N6 | 124.9 (4) | ||
| C8A—S1—C2—C3 | 0.0 (4) | C7—C7A—C8—C1 | 1.0 (8) |
| S1—C2—C3—C3A | −0.4 (5) | O2—C1—C8—C7A | 179.9 (4) |
| C2—C3—C3A—C4 | 179.7 (5) | O3—C1—C8—C7A | −1.2 (7) |
| C2—C3—C3A—C8A | 0.7 (6) | O2—C1—C8—C8A | 0.8 (6) |
| C8A—C3A—C4—C4A | −2.3 (6) | O3—C1—C8—C8A | 179.7 (4) |
| C3—C3A—C4—C4A | 178.8 (4) | C7A—C8—C8A—C3A | −0.3 (6) |
| C3A—C4—C4A—C7A | 1.5 (7) | C1—C8—C8A—C3A | 178.8 (4) |
| C3A—C4—C4A—C5 | 179.4 (4) | C7A—C8—C8A—S1 | −178.6 (3) |
| C4—C4A—C5—N6 | 179.1 (4) | C1—C8—C8A—S1 | 0.5 (6) |
| C7A—C4A—C5—N6 | −2.8 (5) | C4—C3A—C8A—C8 | 1.8 (7) |
| C4A—C5—N6—C7 | 3.5 (5) | C3—C3A—C8A—C8 | −179.2 (4) |
| C4A—C5—N6—C9 | −174.9 (4) | C4—C3A—C8A—S1 | −179.7 (3) |
| C9—N6—C7—O1 | −5.8 (8) | C3—C3A—C8A—S1 | −0.6 (5) |
| C5—N6—C7—O1 | 175.8 (4) | C2—S1—C8A—C8 | 178.8 (4) |
| C9—N6—C7—C7A | 175.4 (4) | C2—S1—C8A—C3A | 0.3 (3) |
| C5—N6—C7—C7A | −3.0 (5) | C7—N6—C9—C10 | −19.4 (7) |
| C4—C4A—C7A—C8 | −0.1 (7) | C5—N6—C9—C10 | 158.8 (4) |
| C5—C4A—C7A—C8 | −178.4 (4) | C7—N6—C9—C14 | 163.3 (4) |
| C4—C4A—C7A—C7 | 179.5 (4) | C5—N6—C9—C14 | −18.5 (6) |
| C5—C4A—C7A—C7 | 1.2 (5) | C14—C9—C10—C11 | −1.3 (7) |
| O1—C7—C7A—C4A | −177.7 (5) | N6—C9—C10—C11 | −178.6 (4) |
| N6—C7—C7A—C4A | 1.0 (5) | C9—C10—C11—C12 | 0.3 (8) |
| O1—C7—C7A—C8 | 1.8 (8) | C10—C11—C12—C13 | 0.3 (8) |
| N6—C7—C7A—C8 | −179.5 (5) | C11—C12—C13—C14 | 0.2 (8) |
| C4A—C7A—C8—C8A | −0.5 (6) | C12—C13—C14—C9 | −1.2 (7) |
| C7—C7A—C8—C8A | −179.9 (4) | C10—C9—C14—C13 | 1.8 (7) |
| C4A—C7A—C8—C1 | −179.6 (4) | N6—C9—C14—C13 | 179.1 (4) |
7-Oxo-6-phenyl-6,7-dihydro-5H-thieno[2,3-f]isoindole-8-carboxylic acid . Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O3—H3O···O1 | 0.74 (8) | 1.76 (8) | 2.496 (5) | 175 (8) |
| C5—H5A···O2i | 0.99 | 2.37 | 3.343 (6) | 167 |
| C5—H5B···O2ii | 0.99 | 2.37 | 3.013 (6) | 122 |
| C11—H11···O1iii | 0.95 | 2.50 | 3.333 (6) | 146 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+1/2, y−1/2, −z+3/2; (iii) −x+2, −y+1, −z+1.
Funding Statement
This publication has been supported by the Russian Science Foundation (project number: 24–23-00212), see https://rscf.ru/project/24–23-00212/. KIH, NAG and TAJ thank the Azerbaijan Medical University, Baku Engineering University and Khazar University, respectively. TH is also grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
- Ajaz, A., Bradley, A. Z., Burrell, R. C., Li, W. H. H., Daoust, K. J., Bovee, L. B., DiRico, K. J. & Johnson, R. P. (2011). J. Org. Chem.76, 9320–9328. [DOI] [PubMed]
- Bober, A. E., Proto, J. T. & Brummond, K. M. (2017). Org. Lett.19, 1500–1503. [DOI] [PubMed]
- Brummond, K. M. & Kocsis, L. S. (2015). Acc. Chem. Res.48, 2320–2329. [DOI] [PubMed]
- El-Mrabet, A., Haoudi, A., Dalbouha, S., Skalli, M. K., Hökelek, T., Capet, F., Kandri Rodi, Y., Mazzah, A. & Sebbar, N. K. (2023). Acta Cryst. E79, 883–889. [DOI] [PMC free article] [PubMed]
- Filali Baba, Y., Hayani, S., Dalbouha, S., Hökelek, T., Ouazzani Chahdi, F., Mague, J. T., Kandri Rodi, Y., Sebbar, N. K. & Essassi, E. M. (2022). Acta Cryst. E78, 425–432. [DOI] [PMC free article] [PubMed]
- Hoye, T. R., Baire, B., Niu, D., Willoughby, P. H. & Woods, B. P. (2012). Nature490, 208–212. [DOI] [PMC free article] [PubMed]
- Huang, J., Du, X., Van Hecke, K., Van der Eycken, E. V., Pereshivko, O. P. & Peshkov, V. A. (2017). Eur. J. Org. Chem. pp. 4379–4388.
- Johnson, R. P. (2010). J. Phys. Org. Chem.23, 283–292.
- Kiemm, L. H. & Gopinath, K. W. (1965). J. Heterocycl. Chem.2, 225–227.
- Klemm, L. H., Gopinath, K. W., Hsu Lee, D., Kelly, F. W., Trod, E. & McGuire, T. M. (1966). Tetrahedron22, 1797–1808.
- Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis54, 797–863.
- Li, W., Zhou, L. & Zhang, J. (2016). Chem. A Eur. J.22, 1558–1571.
- Lu, K., Luo, T., Xiang, Z., You, Z., Fathi, R., Chen, J. & Yang, Z. (2005). J. Comb. Chem.7, 958–967. [DOI] [PubMed]
- Mague, J. T., Akkurt, M., Mohamed, S. K., Al-badrany, K. A. & Ahmed, E. A. (2016). IUCrData1, x161500.
- Rana, A., Paul, I. & Schmittel, M. (2017). J. Phys. Org. Chem.30, e3732.
- Rigaku OD (2021). CryAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shelukho, E. R., Yakovleva, E. D., Logvinenko, N. A., Khrustalev, V. N., Novikov, R. A., Zubkov, F. I. & Zaytsev, V. P. (2025). Synlett36, 1358–1362.
- Sim, G. A., Robertson, J. M. & Goodwin, T. H. (1955). Acta Cryst.8, 157–164.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
- Wang, T., Niu, D. & Hoye, T. R. (2016). J. Am. Chem. Soc.138, 7832–7835. [DOI] [PMC free article] [PubMed]
- Wessig, P. & Müller, G. (2008). Chem. Rev.108, 2051–2063. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025008618/ex2095sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025008618/ex2095Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989025008618/ex2095Isup3.cml
CCDC reference: 2492514
Additional supporting information: crystallographic information; 3D view; checkCIF report




