Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1992 Feb;180(Pt 1):165–174.

Parvalbumin and calbindin immunoreactivity in the cerebral cortex of the hedgehog (Erinaceus europaeus).

I Ferrer 1, M J Zujar 1, C Admella 1, S Alcantara 1
PMCID: PMC1259620  PMID: 1452472

Abstract

To investigate the morphology and distribution of nonpyramidal neurons in the brain of insectivores, parvalbumin and calbindin 28 kDa immunoreactivity was examined in the cerebral cortex of the hedgehog (Erinaceus europaeus). Parvalbumin-immunoreactive cells were found in all layers of the isocortex, but in contrast to other mammals, a laminar organisation or specific regional distribution was not seen. Characteristic parvalbumin-immunoreactive neurons were multipolar cells with large ascending and descending dendrites extending throughout several layers. Calbindin-immunoreactive neurons were similar to those found in other species, although appearing in smaller numbers than in the cerebral cortex of more advanced mammals. The morphology and distribution of parvalbumin- and calbindin-immunoreactive cells in the piriform and entorhinal cortices were similar in hedgehogs and rodents. Parvalbumin-immunoreactive cells in the hippocampal complex were pyramidal-like and bitufted neurons, which were mainly found in the stratum oriens and stratum pyramidale of the hippocampus, and in the stratum moleculare and hilus of the fascia dentata. Heavily stained cells were found in the deep part of the stratum granulare. Intense calbindin immunoreactivity occurred mainly in the granule cell and molecular layers of the dentate gyrus and in the mossy fibre layer. The most outstanding feature in the hippocampal complex of the hedgehog was the extension of calbindin immunoreactivity to CA1 field of the hippocampus, suggesting, in agreement with other reports, that mossy fibres can establish synaptic contacts throughout the pyramidal cell layer.

Full text

PDF
165

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baimbridge K. G., Miller J. J. Immunohistochemical localization of calcium-binding protein in the cerebellum, hippocampal formation and olfactory bulb of the rat. Brain Res. 1982 Aug 12;245(2):223–229. doi: 10.1016/0006-8993(82)90804-6. [DOI] [PubMed] [Google Scholar]
  2. Blümcke I., Hof P. R., Morrison J. H., Celio M. R. Distribution of parvalbumin immunoreactivity in the visual cortex of Old World monkeys and humans. J Comp Neurol. 1990 Nov 15;301(3):417–432. doi: 10.1002/cne.903010307. [DOI] [PubMed] [Google Scholar]
  3. Celio M. R. Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience. 1990;35(2):375–475. doi: 10.1016/0306-4522(90)90091-h. [DOI] [PubMed] [Google Scholar]
  4. Celio M. R. Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. Science. 1986 Feb 28;231(4741):995–997. doi: 10.1126/science.3945815. [DOI] [PubMed] [Google Scholar]
  5. DeFelipe J., Hendry S. H., Hashikawa T., Molinari M., Jones E. G. A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons. Neuroscience. 1990;37(3):655–673. doi: 10.1016/0306-4522(90)90097-n. [DOI] [PubMed] [Google Scholar]
  6. DeFelipe J., Hendry S. H., Jones E. G. Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity. Brain Res. 1989 Nov 27;503(1):49–54. doi: 10.1016/0006-8993(89)91702-2. [DOI] [PubMed] [Google Scholar]
  7. DeFelipe J., Hendry S. H., Jones E. G. Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. Proc Natl Acad Sci U S A. 1989 Mar;86(6):2093–2097. doi: 10.1073/pnas.86.6.2093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Demeulemeester H., Vandesande F., Orban G. A., Brandon C., Vanderhaeghen J. J. Heterogeneity of GABAergic cells in cat visual cortex. J Neurosci. 1988 Mar;8(3):988–1000. doi: 10.1523/JNEUROSCI.08-03-00988.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Demeulemeester H., Vandesande F., Orban G. A., Heizmann C. W., Pochet R. Calbindin D-28K and parvalbumin immunoreactivity is confined to two separate neuronal subpopulations in the cat visual cortex, whereas partial coexistence is shown in the dorsal lateral geniculate nucleus. Neurosci Lett. 1989 Apr 24;99(1-2):6–11. doi: 10.1016/0304-3940(89)90255-3. [DOI] [PubMed] [Google Scholar]
  10. Diamond I. T., Hall W. C. Evolution of neocortex. Science. 1969 Apr 18;164(3877):251–262. doi: 10.1126/science.164.3877.251. [DOI] [PubMed] [Google Scholar]
  11. Ferrer I. Golgi study of the isocortex in an insectivore: the common European mole (Talpa europaea). Brain Behav Evol. 1986;29(1-2):105–114. doi: 10.1159/000118674. [DOI] [PubMed] [Google Scholar]
  12. Ferrer I., Perera M. Structure and nerve cell organisation in the cerebral cortex of the dolphin Stenella coeruleoalba a Golgi study. With special attention to the primary auditory area. Anat Embryol (Berl) 1988;178(2):161–173. doi: 10.1007/BF02463650. [DOI] [PubMed] [Google Scholar]
  13. Ferrer I. The basic structure of the neocortex in insectivorous bats (Miniopterus sthreibersi and Pipistrellus pipistrellus). A Golgi study. J Hirnforsch. 1987;28(2):237–243. [PubMed] [Google Scholar]
  14. Gaarskjaer F. B., Danscher G., West M. J. Hippocampal mossy fibers in the regio superior of the European hedgehog. Brain Res. 1982 Apr 8;237(1):79–90. doi: 10.1016/0006-8993(82)90558-3. [DOI] [PubMed] [Google Scholar]
  15. Gould H. J., 3rd, Ebner F. F. Connections of the visual cortex in the hedgehog (Paraechinus hypomelas). II. Corticocortical projections. J Comp Neurol. 1978 Feb 1;177(3):473–502. doi: 10.1002/cne.901770308. [DOI] [PubMed] [Google Scholar]
  16. Gould H. J., 3rd, Ebner F. F. Interlaminar connections of the visual cortex in the hedgehog (Paraechinus hypomelas). J Comp Neurol. 1978 Feb 1;177(3):503–518. doi: 10.1002/cne.901770309. [DOI] [PubMed] [Google Scholar]
  17. Gould H. J., 3rd, Hall W. C., Ebner F. F. Connections of the visual cortex in the hedgehog (Paraechinus hypomelas). I. Thalamocortical projections. J Comp Neurol. 1978 Feb 1;177(3):445–472. doi: 10.1002/cne.901770307. [DOI] [PubMed] [Google Scholar]
  18. Hendry S. H., Jones E. G., Emson P. C., Lawson D. E., Heizmann C. W., Streit P. Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities. Exp Brain Res. 1989;76(2):467–472. doi: 10.1007/BF00247904. [DOI] [PubMed] [Google Scholar]
  19. Jande S. S., Maler L., Lawson D. E. Immunohistochemical mapping of vitamin D-dependent calcium-binding protein in brain. Nature. 1981 Dec 24;294(5843):765–767. doi: 10.1038/294765a0. [DOI] [PubMed] [Google Scholar]
  20. Kaas J. H. The organization of neocortex in mammals: implications for theories of brain function. Annu Rev Psychol. 1987;38:129–151. doi: 10.1146/annurev.ps.38.020187.001021. [DOI] [PubMed] [Google Scholar]
  21. Kaas J., Hall W. C., Diamond I. T. Cortical visual areas I and II in the hedgehog: relation between evoked potential maps and architectonic subdivisions. J Neurophysiol. 1970 Sep;33(5):595–615. doi: 10.1152/jn.1970.33.5.595. [DOI] [PubMed] [Google Scholar]
  22. Kosaka T., Katsumaru H., Hama K., Wu J. Y., Heizmann C. W. GABAergic neurons containing the Ca2+-binding protein parvalbumin in the rat hippocampus and dentate gyrus. Brain Res. 1987 Sep 1;419(1-2):119–130. doi: 10.1016/0006-8993(87)90575-0. [DOI] [PubMed] [Google Scholar]
  23. Lende R. A., Sadler K. M. Sensory and motor areas in neocortex of hedgehog (Erinaceus). Brain Res. 1967 Jul;5(3):390–405. doi: 10.1016/0006-8993(67)90046-7. [DOI] [PubMed] [Google Scholar]
  24. Lewis D. A., Lund J. S. Heterogeneity of chandelier neurons in monkey neocortex: corticotropin-releasing factor- and parvalbumin-immunoreactive populations. J Comp Neurol. 1990 Mar 22;293(4):599–615. doi: 10.1002/cne.902930406. [DOI] [PubMed] [Google Scholar]
  25. Nitsch R., Soriano E., Frotscher M. The parvalbumin-containing nonpyramidal neurons in the rat hippocampus. Anat Embryol (Berl) 1990;181(5):413–425. doi: 10.1007/BF02433788. [DOI] [PubMed] [Google Scholar]
  26. Papadopoulos G. C., Karamanlidis A. N., Dinopoulos A., Antonopoulos J. Somatostatinlike immunoreactive neurons in the hedgehog (Erinaceus europaeus) and the sheep (Ovis aries) central nervous system. J Comp Neurol. 1986 Feb 8;244(2):174–192. doi: 10.1002/cne.902440205. [DOI] [PubMed] [Google Scholar]
  27. Rami A., Bréhier A., Thomasset M., Rabié A. The comparative immunocytochemical distribution of 28 kDa cholecalcin (CaBP) in the hippocampus of rat, guinea pig and hedgehog. Brain Res. 1987 Sep 29;422(1):149–153. doi: 10.1016/0006-8993(87)90549-x. [DOI] [PubMed] [Google Scholar]
  28. Sanides D., Sanides F. A comparative golgi sutdy of the neocortex in insectivores and rodents. Z Mikrosk Anat Forsch. 1974;88(5):957–977. [PubMed] [Google Scholar]
  29. Sanides F., Sanides D. The "extraverted neurons" of the mammalian cerebral cortex. Z Anat Entwicklungsgesch. 1972;136(3):272–293. doi: 10.1007/BF00522616. [DOI] [PubMed] [Google Scholar]
  30. Satou M., Mori K., Tazawa Y., Takagi S. F. Interneurons mediating fast postsynaptic inhibition in pyriform cortex of the rabbit. J Neurophysiol. 1983 Jul;50(1):89–101. doi: 10.1152/jn.1983.50.1.89. [DOI] [PubMed] [Google Scholar]
  31. Soriano E., Nitsch R., Frotscher M. Axo-axonic chandelier cells in the rat fascia dentata: Golgi-electron microscopy and immunocytochemical studies. J Comp Neurol. 1990 Mar 1;293(1):1–25. doi: 10.1002/cne.902930102. [DOI] [PubMed] [Google Scholar]
  32. Stichel C. C., Singer W., Heizmann C. W., Norman A. W. Immunohistochemical localization of calcium-binding proteins, parvalbumin and calbindin-D 28k, in the adult and developing visual cortex of cats: a light and electron microscopic study. J Comp Neurol. 1987 Aug 22;262(4):563–577. doi: 10.1002/cne.902620409. [DOI] [PubMed] [Google Scholar]
  33. Valverde F., Facal-Valverde M. V. Neocortical layers I and II of the hedgehog (Erinaceus europaeus). I. Intrinsic organization. Anat Embryol (Berl) 1986;173(3):413–430. doi: 10.1007/BF00318926. [DOI] [PubMed] [Google Scholar]
  34. Valverde F., López-Mascaraque K. Neocortical endeavor: basic neuronal organization in the cortex of hedgehog. Prog Clin Biol Res. 1981;59A:281–290. [PubMed] [Google Scholar]
  35. Valverde F., de Carlos J. A., López-Mascaraque L., Doñate-Oliver F. Neocortical layers I and II of the hedgehog (Erinaceus europaeus). II. Thalamo-cortical connections. Anat Embryol (Berl) 1986;175(2):167–179. doi: 10.1007/BF00389593. [DOI] [PubMed] [Google Scholar]
  36. West M. J., Gaarskjaer F. B., Danscher G. The Timm-stained hippocampus of the European hedgehog: a basal mammalian form. J Comp Neurol. 1984 Jul 10;226(4):477–488. doi: 10.1002/cne.902260403. [DOI] [PubMed] [Google Scholar]
  37. West M. J. Stereological studies of the hippocampus: a comparison of the hippocampal subdivisions of diverse species including hedgehogs, laboratory rodents, wild mice and men. Prog Brain Res. 1990;83:13–36. doi: 10.1016/s0079-6123(08)61238-8. [DOI] [PubMed] [Google Scholar]
  38. van Brederode J. F., Helliesen M. K., Hendrickson A. E. Distribution of the calcium-binding proteins parvalbumin and calbindin-D28k in the sensorimotor cortex of the rat. Neuroscience. 1991;44(1):157–171. doi: 10.1016/0306-4522(91)90258-p. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES