Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1992 Oct;181(Pt 2):265–276.

Elucidation of aspects of murine skeletal muscle regeneration using local and whole body irradiation.

T A Robertson 1, M D Grounds 1, J M Papadimitriou 1
PMCID: PMC1259722  PMID: 1295865

Abstract

To investigate the role of proliferating local and emigrating circulatory leucocytes in skeletal muscle regeneration in mice, their bone marrow was ablated with whole body irradiation and compared with the effects of local irradiation. The results indicate that (1) the sealing of damaged myofibres is a function of local cells and is not dependent on the presence of infiltrating leucocytes; (2) the formation of sarcoplasmic projections at the ends of damaged myofibres is dependent on leucocyte infiltration; (3) nuclei in the sarcoplasmic projections are probably derived from fusion of muscle precursor cells; (4) most muscle precursor cells in vivo replicate at least once before fusion; and (5) both replication and fusion of muscle precursors can occur in the absence of infiltrating leucocytes. These results are discussed with respect to the interaction of various cell populations during regeneration of skeletal muscle, and are of clinical significance to pathological changes seen in many myopathies.

Full text

PDF
265

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allbrook D. Skeletal muscle regeneration. Muscle Nerve. 1981 May-Jun;4(3):234–245. doi: 10.1002/mus.880040311. [DOI] [PubMed] [Google Scholar]
  2. Bischoff R. Cell cycle commitment of rat muscle satellite cells. J Cell Biol. 1990 Jul;111(1):201–207. doi: 10.1083/jcb.111.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bischoff R. Interaction between satellite cells and skeletal muscle fibers. Development. 1990 Aug;109(4):943–952. doi: 10.1242/dev.109.4.943. [DOI] [PubMed] [Google Scholar]
  4. Carpenter S., Karpati G. Segmental necrosis and its demarcation in experimental micropuncture injury of skeletal muscle fibers. J Neuropathol Exp Neurol. 1989 Mar;48(2):154–170. doi: 10.1097/00005072-198903000-00003. [DOI] [PubMed] [Google Scholar]
  5. DMITRIEVA E. V. [Post-traumatic regeneration of musculature of the skeletal type following general and local irradiation with roentgen rays]. Arkh Anat Gistol Embriol. 1960 Nov;39:11–22. [PubMed] [Google Scholar]
  6. Echeverría O. M., Ninomiya J. G., Vázquez-Nin G. H. Microscopical and electrophysiological studies on the healing-over of striated fibers of cremaster muscle of the guinea pig. Acta Anat (Basel) 1987;128(4):274–280. doi: 10.1159/000146353. [DOI] [PubMed] [Google Scholar]
  7. Echeverría O. M., Vázquez-Nin G. H., Ninomiya J. G. Structural alterations and changes in the distribution of markers in transected skeletal muscle fibers of the guinea pig. Acta Anat (Basel) 1983;116(4):358–365. doi: 10.1159/000145761. [DOI] [PubMed] [Google Scholar]
  8. Florini J. R., Ewton D. Z., Magri K. A. Hormones, growth factors, and myogenic differentiation. Annu Rev Physiol. 1991;53:201–216. doi: 10.1146/annurev.ph.53.030191.001221. [DOI] [PubMed] [Google Scholar]
  9. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  10. Grounds M. D., McGeachie J. K. A comparison of muscle precursor replication in crush-injured skeletal muscle of Swiss and BALBc mice. Cell Tissue Res. 1989 Feb;255(2):385–391. doi: 10.1007/BF00224122. [DOI] [PubMed] [Google Scholar]
  11. Grounds M. D., McGeachie J. K. Myogenic cell replication in minced skeletal muscle isografts of Swiss and BALBc mice. Muscle Nerve. 1990 Apr;13(4):305–313. doi: 10.1002/mus.880130405. [DOI] [PubMed] [Google Scholar]
  12. Grounds M. D., McGeachie J. K. Myogenic cells of regenerating adult chicken muscle can fuse into myotubes after a single cell division in vivo. Exp Cell Res. 1989 Feb;180(2):429–439. doi: 10.1016/0014-4827(89)90069-4. [DOI] [PubMed] [Google Scholar]
  13. Grounds M. D. Skeletal muscle precursors do not arise from bone marrow cells. Cell Tissue Res. 1983;234(3):713–722. doi: 10.1007/BF00218662. [DOI] [PubMed] [Google Scholar]
  14. Grounds M. D. Towards understanding skeletal muscle regeneration. Pathol Res Pract. 1991 Jan;187(1):1–22. doi: 10.1016/S0344-0338(11)81039-3. [DOI] [PubMed] [Google Scholar]
  15. Gulati A. K. The effect of X-irradiation on skeletal muscle regeneration in the adult rat. J Neurol Sci. 1987 Mar;78(1):111–120. doi: 10.1016/0022-510x(87)90083-9. [DOI] [PubMed] [Google Scholar]
  16. Hall-Craggs E. C. The regeneration of skeletal muscle fibres per continuum. J Anat. 1974 Feb;117(Pt 1):171–178. [PMC free article] [PubMed] [Google Scholar]
  17. Hinterberger T. J., Barald K. F. Fusion between myoblasts and adult muscle fibers promotes remodeling of fibers into myotubes in vitro. Development. 1990 May;109(1):139–147. doi: 10.1242/dev.109.1.139. [DOI] [PubMed] [Google Scholar]
  18. Krieg T., Heckmann M. Regulatory mechanisms of fibroblast activity. Recenti Prog Med. 1989 Nov;80(11):594–598. [PubMed] [Google Scholar]
  19. Nathan C. F. Secretory products of macrophages. J Clin Invest. 1987 Feb;79(2):319–326. doi: 10.1172/JCI112815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Papadimitriou J. M., Ashman R. B. Macrophages: current views on their differentiation, structure, and function. Ultrastruct Pathol. 1989 Jul-Aug;13(4):343–372. doi: 10.3109/01913128909048488. [DOI] [PubMed] [Google Scholar]
  21. Papadimitriou J. M., Robertson T. A., Mitchell C. A., Grounds M. D. The process of new plasmalemma formation in focally injured skeletal muscle fibers. J Struct Biol. 1990 Apr;103(2):124–134. doi: 10.1016/1047-8477(90)90016-6. [DOI] [PubMed] [Google Scholar]
  22. Quinn L. S., Ong L. D., Roeder R. A. Paracrine control of myoblast proliferation and differentiation by fibroblasts. Dev Biol. 1990 Jul;140(1):8–19. doi: 10.1016/0012-1606(90)90048-n. [DOI] [PubMed] [Google Scholar]
  23. RODERICK T. H. THE RESPONSE OF TWENTY-SEVEN INBRED STRAINS OF MICE TO DAILY DOSES OF WHOLE-BODY X-IRRADIATION. Radiat Res. 1963 Dec;20:631–639. [PubMed] [Google Scholar]
  24. Roberts P., McGeachie J. K. Endothelial cell activation during angiogenesis in freely transplanted skeletal muscles in mice and its relationship to the onset of myogenesis. J Anat. 1990 Apr;169:197–207. [PMC free article] [PubMed] [Google Scholar]
  25. Robertson T. A., Grounds M. D., Mitchell C. A., Papadimitriou J. M. Fusion between myogenic cells in vivo: an ultrastructural study in regenerating murine skeletal muscle. J Struct Biol. 1990 Oct-Dec;105(1-3):170–182. doi: 10.1016/1047-8477(90)90111-o. [DOI] [PubMed] [Google Scholar]
  26. Roth D., Oron U. Repair mechanisms involved in muscle regeneration following partial excision of the rat gastrocnemius muscle. Exp Cell Biol. 1985;53(2):107–114. doi: 10.1159/000163302. [DOI] [PubMed] [Google Scholar]
  27. STOCKDALE F. E., HOLTZER H. DNA synthesis and myogenesis. Exp Cell Res. 1961 Sep;24:508–520. doi: 10.1016/0014-4827(61)90450-5. [DOI] [PubMed] [Google Scholar]
  28. Sanes J. R., Marshall L. M., McMahan U. J. Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites. J Cell Biol. 1978 Jul;78(1):176–198. doi: 10.1083/jcb.78.1.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schmalbruch H. Muscle regeneration: fetal myogenesis in a new setting. Bibl Anat. 1986;(29):126–153. [PubMed] [Google Scholar]
  30. Shafiq S. A., Gorycki M. A. Regeneration in skeletal muscle of mouse: some electron-microscope observations. J Pathol Bacteriol. 1965 Jul;90(1):123–127. doi: 10.1002/path.1700900113. [DOI] [PubMed] [Google Scholar]
  31. Sloper J. C., Partridge T. A. Skeletal muscle: regeneration and transplantation studies. Br Med Bull. 1980 May;36(2):153–158. doi: 10.1093/oxfordjournals.bmb.a071631. [DOI] [PubMed] [Google Scholar]
  32. Wakeford S., Watt D. J., Partridge T. A. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD. Muscle Nerve. 1991 Jan;14(1):42–50. doi: 10.1002/mus.880140108. [DOI] [PubMed] [Google Scholar]
  33. Weller B., Karpati G., Lehnert S., Carpenter S. Major alteration of the pathological phenotype in gamma irradiated mdx soleus muscles. J Neuropathol Exp Neurol. 1991 Jul;50(4):419–431. doi: 10.1097/00005072-199107000-00003. [DOI] [PubMed] [Google Scholar]
  34. Whitelaw D. M. The intravascular lifespan of monocytes. Blood. 1966 Sep;28(3):455–464. [PubMed] [Google Scholar]
  35. Yuhas J. M., Storer J. B. On mouse strain differences in radiation resistance: hematopoietic death and the endogenous colony-forming unit. Radiat Res. 1969 Sep;39(3):608–622. [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES