Abstract
Fibre type composition in the soleus muscle was studied in second generation male and female Sprague-Dawley rats bred at 460 Torr (hypobaric hypoxia). In control male and female rats (bred at sea level atmospheric pressure) the percentage of slow twitch oxidative (SO) fibres increased, and the percentage of fast twitch oxidative glycolytic (FOG) fibres decreased over time. In male hypoxic rats fibre type composition did not change. However, in female hypoxic rats the percentage of SO fibres increased, and that of FOG fibres decreased over time. The female hypoxic rats had a higher percentage of FOG fibres and a lower percentage of SO fibres than age-matched control rats. These findings indicate that hypoxia-acclimatised rats have a relatively high percentage of FOG fibres, and that this is due to inhibition of the fibre type shift from FOG to SO, which occurs during normal development. Furthermore, there is a sex-related difference in the change in fibre type composition in hypoxia-acclimatised rats.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baldwin K. M., Klinkerfuss G. H., Terjung R. L., Molé P. A., Holloszy J. O. Respiratory capacity of white, red, and intermediate muscle: adaptative response to exercise. Am J Physiol. 1972 Feb;222(2):373–378. doi: 10.1152/ajplegacy.1972.222.2.373. [DOI] [PubMed] [Google Scholar]
- Barnard R. J., Edgerton V. R., Peter J. B. Effect of exercise on skeletal muscle. I. Biochemical and histochemical properties. J Appl Physiol. 1970 Jun;28(6):762–766. doi: 10.1152/jappl.1970.28.6.762. [DOI] [PubMed] [Google Scholar]
- Bigard A. X., Brunet A., Guezennec C. Y., Monod H. Skeletal muscle changes after endurance training at high altitude. J Appl Physiol (1985) 1991 Dec;71(6):2114–2121. doi: 10.1152/jappl.1991.71.6.2114. [DOI] [PubMed] [Google Scholar]
- Booth F. W., Kelso J. R. Effect of hind-limb immobilization on contractile and histochemical properties of skeletal muscle. Pflugers Arch. 1973 Aug 27;342(3):231–238. doi: 10.1007/BF00591371. [DOI] [PubMed] [Google Scholar]
- Cassin S., Gilbert R. D., Bunnell C. E., Johnson E. M. Capillary development during exposure to chronic hypoxia. Am J Physiol. 1971 Feb;220(2):448–451. doi: 10.1152/ajplegacy.1971.220.2.448. [DOI] [PubMed] [Google Scholar]
- Costa L. E., Taquini A. C. Effect of chronic hypoxia on myoglobin, cytochromes and ubiquinone levels in the rat. Acta Physiol Lat Am. 1970;20(2):103–109. [PubMed] [Google Scholar]
- Davies A. S., Gunn H. M. Histochemical fibre types in the mammalian diaphragm. J Anat. 1972 May;112(Pt 1):41–60. [PMC free article] [PubMed] [Google Scholar]
- Egginton S. Effects of an anabolic hormone on striated muscle growth and performance. Pflugers Arch. 1987 Nov;410(4-5):349–355. doi: 10.1007/BF00586510. [DOI] [PubMed] [Google Scholar]
- Faulkner J. A., Maxwell L. C., Brook D. A., Lieberman D. A. Adaptation of guinea pig plantaris muscle fibers to endurance training. Am J Physiol. 1971 Jul;221(1):291–297. doi: 10.1152/ajplegacy.1971.221.1.291. [DOI] [PubMed] [Google Scholar]
- Fitts R. H., Winder W. W., Brooke M. H., Kaiser K. K., Holloszy J. O. Contractile, biochemical, and histochemical properties of thyrotoxic rat soleus muscle. Am J Physiol. 1980 Jan;238(1):C14–C20. doi: 10.1152/ajpcell.1980.238.1.C15. [DOI] [PubMed] [Google Scholar]
- Gimenez M., Sanderson R. J., Reiss O. K., Banchero N. Effects of altitude on myoglobin and mitochondrial protein in canine skeletal muscle. Respiration. 1977;34(3):171–176. doi: 10.1159/000193811. [DOI] [PubMed] [Google Scholar]
- Hauschka E. O., Roy R. R., Edgerton V. R. Size and metabolic properties of single muscle fibers in rat soleus after hindlimb suspension. J Appl Physiol (1985) 1987 Jun;62(6):2338–2347. doi: 10.1152/jappl.1987.62.6.2338. [DOI] [PubMed] [Google Scholar]
- Ishihara A., Taguchi S., Itoh M., Itoh K. Oxidative metabolism of the rat soleus neuron pool following hypobaric hypoxia. Brain Res Bull. 1990 Jan;24(1):143–146. doi: 10.1016/0361-9230(90)90298-e. [DOI] [PubMed] [Google Scholar]
- Itoh K., Moritani T., Ishida K., Hirofuji C., Taguchi S., Itoh M. Hypoxia-induced fibre type transformation in rat hindlimb muscles. Histochemical and electro-mechanical changes. Eur J Appl Physiol Occup Physiol. 1990;60(5):331–336. doi: 10.1007/BF00713495. [DOI] [PubMed] [Google Scholar]
- Itoh M., Itoh K., Taguchi S., Hirofuji C., Takeuchi H., Ishihara A. Effect of hypobaric hypoxia on fiber type composition of the soleus muscle in the developing rat. Aviat Space Environ Med. 1992 Jul;63(7):583–587. [PubMed] [Google Scholar]
- Karlsson J., Smith H. J. The effect of lumbar sympathectomy on fiber composition, contractility of skeletal muscle and regulation of central circulation in dogs. Acta Physiol Scand. 1983 Sep;119(1):1–6. doi: 10.1111/j.1748-1716.1983.tb07298.x. [DOI] [PubMed] [Google Scholar]
- Karpati G., Engel W. K. Correlative histochemical study of skeletal muscle after suprasegmental denervation, peripheral nerve section, and skeletal fixation. Neurology. 1968 Jul;18(7):681–692. doi: 10.1212/wnl.18.7.681. [DOI] [PubMed] [Google Scholar]
- Karpati G., Engel W. K. Histochemical investigation of fiber type ratios with the myofibrillar ATP-ase reaction in normal and denervated skeletal muscles of guinea pig. Am J Anat. 1968 Jan;122(1):145–155. doi: 10.1002/aja.1001220109. [DOI] [PubMed] [Google Scholar]
- Lieber R. L., Fridén J. O., Hargens A. R., Feringa E. R. Long-term effects of spinal cord transection on fast and slow rat skeletal muscle. II. Morphometric properties. Exp Neurol. 1986 Mar;91(3):435–448. doi: 10.1016/0014-4886(86)90042-7. [DOI] [PubMed] [Google Scholar]
- Maltin C. A., Delday M. I., Baillie A. G., Grubb D. A., Garlick P. J. Fiber-type composition of nine rat muscles. I. Changes during the first year of life. Am J Physiol. 1989 Dec;257(6 Pt 1):E823–E827. doi: 10.1152/ajpendo.1989.257.6.E823. [DOI] [PubMed] [Google Scholar]
- NACHLAS M. M., TSOU K. C., DE SOUZA E., CHENG C. S., SELIGMAN A. M. Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole. J Histochem Cytochem. 1957 Jul;5(4):420–436. doi: 10.1177/5.4.420. [DOI] [PubMed] [Google Scholar]
- Nicol C. J., Bruce D. S. Effect of hyperthyroidism on the contractile and histochemical properties of fast and slow twitch skeletal muscle in the rat. Pflugers Arch. 1981 Apr;390(1):73–79. doi: 10.1007/BF00582715. [DOI] [PubMed] [Google Scholar]
- PADYKULA H. A., HERMAN E. The specificity of the histochemical method for adenosine triphosphatase. J Histochem Cytochem. 1955 May;3(3):170–195. doi: 10.1177/3.3.170. [DOI] [PubMed] [Google Scholar]
- Peter J. B., Barnard R. J., Edgerton V. R., Gillespie C. A., Stempel K. E. Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry. 1972 Jul 4;11(14):2627–2633. doi: 10.1021/bi00764a013. [DOI] [PubMed] [Google Scholar]
- Pette D., Müller W., Leisner E., Vrbová G. Time dependent effects on contractile properties, fibre population, myosin light chains and enzymes of energy metabolism in intermittently and continuously stimulated fast twitch muscles of the rabbit. Pflugers Arch. 1976 Jul 30;364(2):103–112. doi: 10.1007/BF00585177. [DOI] [PubMed] [Google Scholar]
- Pette D., Smith M. E., Staudte H. W., Vrbová G. Effects of long-term electrical stimulation on some contractile and metabolic characteristics of fast rabbit muscles. Pflugers Arch. 1973 Feb 6;338(3):257–272. doi: 10.1007/BF00587391. [DOI] [PubMed] [Google Scholar]
- Reiser P. J., Kasper C. E., Moss R. L. Myosin subunits and contractile properties of single fibers from hypokinetic rat muscles. J Appl Physiol (1985) 1987 Dec;63(6):2293–2300. doi: 10.1152/jappl.1987.63.6.2293. [DOI] [PubMed] [Google Scholar]
- Rubinstein N. A., Kelly A. M. Myogenic and neurogenic contributions to the development of fast and slow twitch muscles in rat. Dev Biol. 1978 Feb;62(2):473–485. doi: 10.1016/0012-1606(78)90229-4. [DOI] [PubMed] [Google Scholar]
- Salmons S., Henriksson J. The adaptive response of skeletal muscle to increased use. Muscle Nerve. 1981 Mar-Apr;4(2):94–105. doi: 10.1002/mus.880040204. [DOI] [PubMed] [Google Scholar]
- Salmons S., Sréter F. A. Significance of impulse activity in the transformation of skeletal muscle type. Nature. 1976 Sep 2;263(5572):30–34. doi: 10.1038/263030a0. [DOI] [PubMed] [Google Scholar]
- Shertzer H. G., Cascarano J. Mitochondrial alterations in heart, liver, and kidney of altitude-acclimated rats. Am J Physiol. 1972 Sep;223(3):632–636. doi: 10.1152/ajplegacy.1972.223.3.632. [DOI] [PubMed] [Google Scholar]
- Sickles D. W., Oblak T. G., Scholer J. Hyperthyroidism selectively increases oxidative metabolism of slow-oxidative motor units. Exp Neurol. 1987 Jul;97(1):90–105. doi: 10.1016/0014-4886(87)90284-6. [DOI] [PubMed] [Google Scholar]
- Sillau A. H., Aquin L., Bui M. V., Banchero N. Chronic hypoxia does not affect guinea pig skeletal muscle capillarity. Pflugers Arch. 1980 Jul;386(1):39–45. doi: 10.1007/BF00584185. [DOI] [PubMed] [Google Scholar]
- Sillau A. H., Banchero N. Effect of hypoxia on the capillarity of guinea pig skeletal muscle. Proc Soc Exp Biol Med. 1979 Mar;160(3):368–373. doi: 10.3181/00379727-160-40452. [DOI] [PubMed] [Google Scholar]
- Sillau A. H., Banchero N. Effects of hypoxia on capillary density and fiber composition in rat skeletal muscle. Pflugers Arch. 1977 Sep 16;370(3):227–232. doi: 10.1007/BF00585531. [DOI] [PubMed] [Google Scholar]
- Smith D., Green H., Thomson J., Sharratt M. Oxidative potential in developing rat diaphragm, EDL, and soleus muscle fibers. Am J Physiol. 1988 May;254(5 Pt 1):C661–C668. doi: 10.1152/ajpcell.1988.254.5.C661. [DOI] [PubMed] [Google Scholar]
- Taguchi S., Hata Y., Itoh K. Enzymatic responses and adaptations to swimming training and hypobaric hypoxia in postnatal rats. Jpn J Physiol. 1985;35(6):1023–1032. doi: 10.2170/jjphysiol.35.1023. [DOI] [PubMed] [Google Scholar]
- Taguchi S., Ishihara A., Itoh M., Itoh K. Effects of hypobaric hypoxia on the oxidative capacity of the extensor digitorum longus motor units in the rat. Neurochem Res. 1990 Sep;15(9):923–926. doi: 10.1007/BF00965913. [DOI] [PubMed] [Google Scholar]
- Takekura H., Yoshioka T. Ultrastructural and metabolic characteristics of single muscle fibres belonging to the same type in various muscles in rats. J Muscle Res Cell Motil. 1990 Apr;11(2):98–104. doi: 10.1007/BF01766488. [DOI] [PubMed] [Google Scholar]
- Templeton G. H., Sweeney H. L., Timson B. F., Padalino M., Dudenhoeffer G. A. Changes in fiber composition of soleus muscle during rat hindlimb suspension. J Appl Physiol (1985) 1988 Sep;65(3):1191–1195. doi: 10.1152/jappl.1988.65.3.1191. [DOI] [PubMed] [Google Scholar]
- Turek Z., Grandtner M., Kreuzer F. Cardiac hypertrophy, capillary and muscle fiber density, muscle fiber diameter, capillary radius and diffusion distance in the myocardium of growing rats adapted to a simulated altitude of 3500 m. Pflugers Arch. 1972;335(1):19–28. doi: 10.1007/BF00586932. [DOI] [PubMed] [Google Scholar]
- Vaughan H. S., Aziz-Ullah, Goldspink G., Nowell N. W. Sex and stock differences in the histochemical myofibrillar adenosine triphosphatase reaction in the soleus muscle of the mouse. J Histochem Cytochem. 1974 Mar;22(3):155–159. doi: 10.1177/22.3.155. [DOI] [PubMed] [Google Scholar]
- WATTENBERG L. W., LEONG J. L. Effects of coenzyme Q10 and menadione on succinic dehydrogenase activity as measured by tetrazolium salt reduction. J Histochem Cytochem. 1960 Jul;8:296–303. doi: 10.1177/8.4.296. [DOI] [PubMed] [Google Scholar]