Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1992 Aug;181(Pt 1):61–71.

Immunocytochemical localisation of substance P in vagal ganglion cells and pericellular arborisations in the monkey.

E A Ling 1, T Y Yick 1, G L Ng 1, W C Wong 1
PMCID: PMC1259752  PMID: 1284128

Abstract

The quantitative cell count showed the presence of about 20,000 ganglion cells with associated satellite elements in the nodose ganglion in the monkey. Among these closely packed cells, at least one-third were substance P (SP) immunoreactive, ranging from faint or moderate to intense staining. Substance P immunoreactivity (SP-IR) was localised in the cell bodies and their long extending neurites. Ultrastructural study showed that SP-IR was not associated with any particular organelles or inclusions. A striking feature of the nodose ganglion was the occurrence of SP-positive pericellular arborisations associated with about 0.5% of the ganglion cells which were almost exclusively SP-negative. The pericellular arborisation displayed diverse morphological forms from a simple tortuous fibre to complex glomerular networks or plexuses encircling the soma of SP-negative ganglion cells. The varicose nerve fibres forming the pericellular arborisations appeared to terminate as 'boutons' contacting the soma of the ganglion cells. Electron microscopic study demonstrated the close spatial relation between the SP-IR profiles and the ganglion cell but there was no direct synaptic contact. In some instances, the SP-IR profiles containing agranular and dense-cored vesicles penetrated the cytoplasm of satellite cells, almost reaching the surface of the soma of the ganglion cell. The sources of origin of the nerve plexuses in the pericellular arborisation were either from the small and sparsely distributed jugular ganglion cells which were intensely SP-IR or from the intrinsic SP-IR nodose ganglion cells. The possibility that the efferent neurons in the dorsal motor nucleus of the vagus could also contribute to the pericellular arborisation was also considered. The function of the pericellular arborisations may be related to the modulation of the SP-deficient ganglion cells with which they associate through the release of SP and probably by way of the satellite cells.

Full text

PDF
61

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckstead R. M., Norgren R. An autoradiographic examination of the central distribution of the trigeminal, facial, glossopharyngeal, and vagal nerves in the monkey. J Comp Neurol. 1979 Apr 1;184(3):455–472. doi: 10.1002/cne.901840303. [DOI] [PubMed] [Google Scholar]
  2. Chan-Palay V., Palay S. L. Immunocytochemical identification of substance P cells and their processes in rat sensory ganglia and their terminals in the spinal cord: light microscopic studies. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3597–3601. doi: 10.1073/pnas.74.8.3597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chan-Palay V., Palay S. L. Ultrastructural identification of substance P cells and their processes in rat sensory ganglia and their terminals in the spinal cord by immunocytochemistry. Proc Natl Acad Sci U S A. 1977 Sep;74(9):4050–4054. doi: 10.1073/pnas.74.9.4050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cuello A. C., Del Fiacco M., Paxinos G. The central and peripheral ends of the substance P-containing sensory neurones in the rat trigeminal system. Brain Res. 1978 Sep 8;152(3):499–500. doi: 10.1016/0006-8993(78)91105-8. [DOI] [PubMed] [Google Scholar]
  5. Hamilton R. B., Pritchard T. C., Norgren R. Central distribution of the cervical vagus nerve in Old and New World primates. J Auton Nerv Syst. 1987 May;19(2):153–169. doi: 10.1016/0165-1838(87)90008-7. [DOI] [PubMed] [Google Scholar]
  6. Hökfelt T., Elfvin L. G., Schultzberg M., Goldstein M., Nilsson G. On the occurrence of substance P-containing fibers in sympathetic ganglia: immunohistochemical evidence. Brain Res. 1977 Aug 19;132(1):29–41. doi: 10.1016/0006-8993(77)90704-1. [DOI] [PubMed] [Google Scholar]
  7. Hökfelt T., Kellerth J. O., Nilsson G., Pernow B. Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurons. Brain Res. 1975 Dec 19;100(2):235–252. doi: 10.1016/0006-8993(75)90481-3. [DOI] [PubMed] [Google Scholar]
  8. Katz D. M., Karten H. J. Substance P in the vagal sensory ganglia: localization in cell bodies and pericellular arborizations. J Comp Neurol. 1980 Sep 15;193(2):549–564. doi: 10.1002/cne.901930216. [DOI] [PubMed] [Google Scholar]
  9. Lindh B., Dalsgaard C. J., Elfvin L. G., Hökfelt T., Cuello A. C. Evidence of substance P immunoreactive neurons in dorsal root ganglia and vagal ganglia projecting to the guinea pig pylorus. Brain Res. 1983 Jun 20;269(2):365–369. doi: 10.1016/0006-8993(83)90148-8. [DOI] [PubMed] [Google Scholar]
  10. Ling E. A., Leong S. K. Effects of intraneural injection of Ricinus communis agglutinin-60 into rat vagus nerve. J Neurocytol. 1987 Jun;16(3):373–387. doi: 10.1007/BF01611348. [DOI] [PubMed] [Google Scholar]
  11. Ling E. A., Wong W. C. An electron microscopic study of the nodose (inferior vagal) ganglion cells in the monkey. J Neurocytol. 1988 Dec;17(6):845–857. doi: 10.1007/BF01216711. [DOI] [PubMed] [Google Scholar]
  12. Ling E. A., Wong W. C., Yick T. Y., Leong S. K. Ultrastructural changes in the dorsal motor nucleus of monkey following bilateral cervical vagotomy. J Neurocytol. 1986 Feb;15(1):1–15. doi: 10.1007/BF02057900. [DOI] [PubMed] [Google Scholar]
  13. Ljungdahl A., Hökfelt T., Nilsson G. Distribution of substance P-like immunoreactivity in the central nervous system of the rat--I. Cell bodies and nerve terminals. Neuroscience. 1978;3(10):861–943. doi: 10.1016/0306-4522(78)90116-1. [DOI] [PubMed] [Google Scholar]
  14. Lundberg J. M., Hökfelt T., Nilsson G., Terenius L., Rehfeld J., Elde R., Said S. Peptide neurons in the vagus, splanchnic and sciatic nerves. Acta Physiol Scand. 1978 Dec;104(4):499–501. doi: 10.1111/j.1748-1716.1978.tb06307.x. [DOI] [PubMed] [Google Scholar]
  15. MacLean D. B., Lewis S. F. Axoplasmic transport of somatostatin and substance P in the vagus nerve of the rat, guinea pig and cat. Brain Res. 1984 Jul 30;307(1-2):135–145. doi: 10.1016/0006-8993(84)90469-4. [DOI] [PubMed] [Google Scholar]
  16. MacLean D. B., Lewis S. F. De novo synthesis and axoplasmic transport of [35S]methionine-substance P in explants of nodose ganglion/vagus nerve. Brain Res. 1984 Sep 24;310(2):325–335. doi: 10.1016/0006-8993(84)90155-0. [DOI] [PubMed] [Google Scholar]
  17. MacLean D. B., Lewis S. F., Wheeler F. B. Substance P content in cultured neonatal rat vagal sensory neurons: the effect of nerve growth factor. Brain Res. 1988 Aug 2;457(1):53–62. doi: 10.1016/0006-8993(88)90056-x. [DOI] [PubMed] [Google Scholar]
  18. Matthews M. R., Cuello A. C. The origin and possible significance of substance P immunoreactive networks in the prevertebral ganglia and related structures in the guinea-pig. Philos Trans R Soc Lond B Biol Sci. 1984 Aug 14;306(1128):247–276. doi: 10.1098/rstb.1984.0087. [DOI] [PubMed] [Google Scholar]
  19. McMahan U. J., Purves D. Visual identification of two kinds of nerve cells and their synaptic contacts in a living autonomic ganglion of the mudpuppy (Necturus maculosus). J Physiol. 1976 Jan;254(2):405–425. doi: 10.1113/jphysiol.1976.sp011238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nilsson G., Larsson L. I., Håkanson R., Brodin E., Pernow B., Sundler F. Localization of substance P-like immunoreactivity in mouse gut. Histochemistry. 1975;43(1):97–99. doi: 10.1007/BF00490158. [DOI] [PubMed] [Google Scholar]
  21. Pearse A. G., Polak J. M. Immunocytochemical localization of substance P in mammalian intestine. Histochemistry. 1975;41(4):373–375. doi: 10.1007/BF00490081. [DOI] [PubMed] [Google Scholar]
  22. Weihe E., Reinecke M., Opherk D., Forssmann W. G. Peptidergic innervation (substance P) in the human heart. J Mol Cell Cardiol. 1981 Mar;13(3):331–333. doi: 10.1016/0022-2828(81)90321-7. [DOI] [PubMed] [Google Scholar]
  23. Wharton J., Polak J. M., McGregor G. P., Bishop A. E., Bloom S. R. The distribution of substrate P-like immunoreactive nerves in the guinea-pig heart. Neuroscience. 1981;6(11):2193–2204. doi: 10.1016/0306-4522(81)90007-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES