Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1992 Aug;181(Pt 1):73–77.

Quantitative analysis of factors contributing to expansion of microvillous surface area in the coprodaeum of hens transferred to a low NaCl diet.

T M Mayhew 1, V S Elbrønd 1, V Dantzer 1, E Skadhauge 1
PMCID: PMC1259753  PMID: 1294571

Abstract

A stereological study of the lower intestine (coprodaeum) of the domestic hen was undertaken using combined light and electron microscopy. Numbers of columnar absorptive epithelial cells and the dimensions and numbers of microvilli were estimated. The aim was to identify the main factors contributing to an increase in microvillous surface area following transfer of hens from a high to a low NaCl diet on which they were kept for at least 3 wk. The principal contributor to observed changes between organs was cell number. Birds adapted to the low NaCl diet had 57% more cells than high NaCl controls. The average cell had a larger microvillous surface (55%) and this could be explained by the presence of longer (34%) and more densely packed (38%) microvilli. The total number of microvilli per coprodaeum doubled (from 35 x 10(9) on the high NaCl to 71 x 10(9) on the low NaCl diet). The increase in cell number accounted for 67% of the change in surface area and 78% of the change in number of microvilli per organ. These findings emphasise that, when assessing the form and function of a whole organ, it is important to monitor cell populations as well as single cells. This is especially true when studying renewing and expanding (rather than static) populations.

Full text

PDF
73

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baddeley A. J., Gundersen H. J., Cruz-Orive L. M. Estimation of surface area from vertical sections. J Microsc. 1986 Jun;142(Pt 3):259–276. doi: 10.1111/j.1365-2818.1986.tb04282.x. [DOI] [PubMed] [Google Scholar]
  2. Buschmann R. J., Manke D. J. Morphometric analysis of the membranes and organelles of small intestinal enterocytes. I. Fasted hamster. J Ultrastruct Res. 1981 Jul;76(1):1–14. doi: 10.1016/s0022-5320(81)80046-9. [DOI] [PubMed] [Google Scholar]
  3. Buschmann R. J., Manke D. J. Morphometric analysis of the membranes and organelles of small intestinal enterocytes. II. lipid-fed hamster. J Ultrastruct Res. 1981 Jul;76(1):15–26. doi: 10.1016/s0022-5320(81)80047-0. [DOI] [PubMed] [Google Scholar]
  4. Choshniak I., Munck B. G., Skadhauge E. Sodium chloride transport across the chicken coprodeum. Basic characteristics and dependence on sodium chloride intake. J Physiol. 1977 Oct;271(2):489–503. doi: 10.1113/jphysiol.1977.sp012010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clauss W., Dürr J. E., Guth D., Skadhauge E. Effects of adrenal steroids on Na transport in the lower intestine (coprodeum) of the hen. J Membr Biol. 1987;96(2):141–152. doi: 10.1007/BF01869240. [DOI] [PubMed] [Google Scholar]
  6. Dahm H. H., Schramm U., Lange W. Scanning and transmission electron microscopic observations of the cloacal epithelia of the domestic fowl. Cell Tissue Res. 1980;211(1):83–93. doi: 10.1007/BF00233725. [DOI] [PubMed] [Google Scholar]
  7. Gundersen H. J., Jensen E. B. Stereological estimation of the volume-weighted mean volume of arbitrary particles observed on random sections. J Microsc. 1985 May;138(Pt 2):127–142. doi: 10.1111/j.1365-2818.1985.tb02607.x. [DOI] [PubMed] [Google Scholar]
  8. Holtug K., Shipley A., Dantzer V., Sten-Knudsen O., Skadhauge E. Localization of sodium absorption and chloride secretion in an intestinal epithelium. J Membr Biol. 1991 Jun;122(3):215–229. doi: 10.1007/BF01871422. [DOI] [PubMed] [Google Scholar]
  9. Mayhew T. M., Dantzer V., Elbrønd V. S., Skadhauge E. A sampling scheme intended for tandem measurements of sodium transport and microvillous surface area in the coprodaeal epithelium of hens on high- and low-salt diets. J Anat. 1990 Dec;173:19–31. [PMC free article] [PubMed] [Google Scholar]
  10. Mayhew T. M., Middleton C. Crypts, villi and microvilli in the small intestine of the rat. A stereological study of their variability within and between animals. J Anat. 1985 Aug;141:1–17. [PMC free article] [PubMed] [Google Scholar]
  11. Mayhew T. M. Quantitative ultrastructural study on the responses of microvilli along the small bowel to fasting. J Anat. 1987 Oct;154:237–243. [PMC free article] [PubMed] [Google Scholar]
  12. Mayhew T. M. Stereological approach to the study of synapse morphometry with particular regard to estimating number in a volume and on a surface. J Neurocytol. 1979 Apr;8(2):121–138. doi: 10.1007/BF01175556. [DOI] [PubMed] [Google Scholar]
  13. Mayhew T. M. Striated brush border of intestinal absorptive epithelial cells: stereological studies on microvillous morphology in different adaptive states. J Electron Microsc Tech. 1990 Sep;16(1):45–55. doi: 10.1002/jemt.1060160107. [DOI] [PubMed] [Google Scholar]
  14. Mayhew T. M. The new stereological methods for interpreting functional morphology from slices of cells and organs. Exp Physiol. 1991 Sep;76(5):639–665. doi: 10.1113/expphysiol.1991.sp003533. [DOI] [PubMed] [Google Scholar]
  15. Phillips A. D., France N. E., Walker-Smith J. A. The structure of the enterocyte in relation to its position on the villus in childhood: an electron microscopical study. Histopathology. 1979 Mar;3(2):117–130. doi: 10.1111/j.1365-2559.1979.tb02988.x. [DOI] [PubMed] [Google Scholar]
  16. Pénzes L., Regius O. Changes in the intestinal microvillous surface area during reproduction and ageing in the female rat. J Anat. 1985 May;140(Pt 3):389–396. [PMC free article] [PubMed] [Google Scholar]
  17. Skadhauge E., Clauss W., Dantzer V. Regulation of electrogenic Na-absorption and induced Cl-secretion in an intestinal epithelium: delayed effects of aldosterone. Acta Physiol Scand Suppl. 1989;583:69–73. [PubMed] [Google Scholar]
  18. Smith P. R., Benos D. J. Epithelial Na+ channels. Annu Rev Physiol. 1991;53:509–530. doi: 10.1146/annurev.ph.53.030191.002453. [DOI] [PubMed] [Google Scholar]
  19. Sødring Elbrønd V., Dantzer V., Mayhew T. M., Skadhauge E. Avian lower intestine adapts to dietary salt (NaCl) depletion by increasing transepithelial sodium transport and microvillous membrane surface area. Exp Physiol. 1991 Sep;76(5):733–744. doi: 10.1113/expphysiol.1991.sp003540. [DOI] [PubMed] [Google Scholar]
  20. Thomas D. H., Skadhauge E. Time course of adaptation to low and high NaCl diets in the domestic fowl. Effects on electrical behaviour of isolated epithelia from the lower intestine. Pflugers Arch. 1982 Nov 11;395(3):165–170. doi: 10.1007/BF00584803. [DOI] [PubMed] [Google Scholar]
  21. Tousson A., Alley C. D., Sorscher E. J., Brinkley B. R., Benos D. J. Immunochemical localization of amiloride-sensitive sodium channels in sodium-transporting epithelia. J Cell Sci. 1989 Jun;93(Pt 2):349–362. doi: 10.1242/jcs.93.2.349. [DOI] [PubMed] [Google Scholar]
  22. Turnheim K. Intrinsic regulation of apical sodium entry in epithelia. Physiol Rev. 1991 Apr;71(2):429–445. doi: 10.1152/physrev.1991.71.2.429. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES