Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1993 Apr;182(Pt 2):213–230.

Lines of action and moment arms of the major force-carrying structures crossing the human knee joint.

W Herzog 1, L J Read 1
PMCID: PMC1259832  PMID: 8376196

Abstract

The purpose of this study was to obtain lines of action and moment arms in the sagittal plane of the major force-carrying structures crossing the knee joint. The muscles and ligaments studied were the quadriceps, biceps femoris, semimembranosus, and semitendinosus muscles and the anterior and posterior cruciate and medial and lateral collateral ligaments. All lines of action and moment arms of the structures of interest were determined as a function of knee joint angles and were expressed using polynomial regression equations. This representation of the results allows for easy application of the findings to musculoskeletal models of the human knee joint.

Full text

PDF
213

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed A. M., Hyder A., Burke D. L., Chan K. H. In-vitro ligament tension pattern in the flexed knee in passive loading. J Orthop Res. 1987;5(2):217–230. doi: 10.1002/jor.1100050208. [DOI] [PubMed] [Google Scholar]
  2. An K. N., Kaufman K. R., Chao E. Y. Physiological considerations of muscle force through the elbow joint. J Biomech. 1989;22(11-12):1249–1256. doi: 10.1016/0021-9290(89)90227-3. [DOI] [PubMed] [Google Scholar]
  3. Arms S. W., Pope M. H., Johnson R. J., Fischer R. A., Arvidsson I., Eriksson E. The biomechanics of anterior cruciate ligament rehabilitation and reconstruction. Am J Sports Med. 1984 Jan-Feb;12(1):8–18. doi: 10.1177/036354658401200102. [DOI] [PubMed] [Google Scholar]
  4. Buff H. U., Jones L. C., Hungerford D. S. Experimental determination of forces transmitted through the patello-femoral joint. J Biomech. 1988;21(1):17–23. doi: 10.1016/0021-9290(88)90187-x. [DOI] [PubMed] [Google Scholar]
  5. Butler D. L., Noyes F. R., Grood E. S. Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am. 1980 Mar;62(2):259–270. [PubMed] [Google Scholar]
  6. Crowninshield R. D., Brand R. A. A physiologically based criterion of muscle force prediction in locomotion. J Biomech. 1981;14(11):793–801. doi: 10.1016/0021-9290(81)90035-x. [DOI] [PubMed] [Google Scholar]
  7. Dul J., Johnson G. E., Shiavi R., Townsend M. A. Muscular synergism--II. A minimum-fatigue criterion for load sharing between synergistic muscles. J Biomech. 1984;17(9):675–684. doi: 10.1016/0021-9290(84)90121-0. [DOI] [PubMed] [Google Scholar]
  8. Frankel V. H., Burstein A. H., Brooks D. B. Biomechanics of internal derangement of the knee. Pathomechanics as determined by analysis of the instant centers of motion. J Bone Joint Surg Am. 1971 Jul;53(5):945–962. [PubMed] [Google Scholar]
  9. Girgis F. G., Marshall J. L., Monajem A. The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop Relat Res. 1975 Jan-Feb;(106):216–231. doi: 10.1097/00003086-197501000-00033. [DOI] [PubMed] [Google Scholar]
  10. Harding M. L., Harding L., Goodfellow J. W. A preliminary report of a simple rig to aid study of the functional anatomy of the cadaver human knee joint. J Biomech. 1977;10(8):517–523. doi: 10.1016/0021-9290(77)90105-1. [DOI] [PubMed] [Google Scholar]
  11. Henning C. E., Lynch M. A., Glick K. R., Jr An in vivo strain gage study of elongation of the anterior cruciate ligament. Am J Sports Med. 1985 Jan-Feb;13(1):22–26. doi: 10.1177/036354658501300104. [DOI] [PubMed] [Google Scholar]
  12. Herzog W., Hasler E., Abrahamse S. K. A comparison of knee extensor strength curves obtained theoretically and experimentally. Med Sci Sports Exerc. 1991 Jan;23(1):108–114. [PubMed] [Google Scholar]
  13. Herzog W. Individual muscle force estimations using a non-linear optimal design. J Neurosci Methods. 1987 Oct;21(2-4):167–179. doi: 10.1016/0165-0270(87)90114-2. [DOI] [PubMed] [Google Scholar]
  14. Kennedy J. C., Hawkins R. J., Willis R. B. Strain gauge analysis of knee ligaments. Clin Orthop Relat Res. 1977 Nov-Dec;(129):225–229. doi: 10.1097/00003086-197711000-00031. [DOI] [PubMed] [Google Scholar]
  15. Lindahl O., Movin A. The mechanics of extension of the knee-joint. Acta Orthop Scand. 1967;38(2):226–234. doi: 10.3109/17453676708989636. [DOI] [PubMed] [Google Scholar]
  16. Moeinzadeh M. H., Engin A. E., Akkas N. Two-dimensional dynamic modelling of human knee joint. J Biomech. 1983;16(4):253–264. doi: 10.1016/0021-9290(83)90133-1. [DOI] [PubMed] [Google Scholar]
  17. Nisell R., Németh G., Ohlsén H. Joint forces in extension of the knee. Analysis of a mechanical model. Acta Orthop Scand. 1986 Feb;57(1):41–46. doi: 10.3109/17453678608993213. [DOI] [PubMed] [Google Scholar]
  18. Renström P., Arms S. W., Stanwyck T. S., Johnson R. J., Pope M. H. Strain within the anterior cruciate ligament during hamstring and quadriceps activity. Am J Sports Med. 1986 Jan-Feb;14(1):83–87. doi: 10.1177/036354658601400114. [DOI] [PubMed] [Google Scholar]
  19. Seireg A., Arvikar R. J. A mathematical model for evaluation of forces in lower extremeties of the musculo-skeletal system. J Biomech. 1973 May;6(3):313–326. doi: 10.1016/0021-9290(73)90053-5. [DOI] [PubMed] [Google Scholar]
  20. Smidt G. L. Biomechanical analysis of knee flexion and extension. J Biomech. 1973 Jan;6(1):79–92. doi: 10.1016/0021-9290(73)90040-7. [DOI] [PubMed] [Google Scholar]
  21. Soudan K., Van Audekercke R., Martens M. Methods, difficulties and inaccuracies in the study of human joint kinematics and pathokinematics by the instant axis concept. Example: the knee joint. J Biomech. 1979;12(1):27–33. doi: 10.1016/0021-9290(79)90006-x. [DOI] [PubMed] [Google Scholar]
  22. Spoor C. W., van Leeuwen J. L. Knee muscle moment arms from MRI and from tendon travel. J Biomech. 1992 Feb;25(2):201–206. doi: 10.1016/0021-9290(92)90276-7. [DOI] [PubMed] [Google Scholar]
  23. Walker P. S., Hajek J. V. The load-bearing area in the knee joint. J Biomech. 1972 Nov;5(6):581–589. doi: 10.1016/0021-9290(72)90030-9. [DOI] [PubMed] [Google Scholar]
  24. van Eijden T. M., Kouwenhoven E., Verburg J., Weijs W. A. A mathematical model of the patellofemoral joint. J Biomech. 1986;19(3):219–229. doi: 10.1016/0021-9290(86)90154-5. [DOI] [PubMed] [Google Scholar]
  25. van Eijden T. M., Kouwenhoven E., Weijs W. A. Mechanics of the patellar articulation. Effects of patellar ligament length studied with a mathematical model. Acta Orthop Scand. 1987 Oct;58(5):560–566. doi: 10.3109/17453678709146400. [DOI] [PubMed] [Google Scholar]
  26. van Eijden T. M., de Boer W., Weijs W. A. The orientation of the distal part of the quadriceps femoris muscle as a function of the knee flexion-extension angle. J Biomech. 1985;18(10):803–809. doi: 10.1016/0021-9290(85)90055-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES