ABSTRACT
Huntington's disease (HD) is traditionally viewed as an age-related disorder. Emerging evidence suggests that mutant huntingtin (mHTT) disrupts early neurodevelopment, although the contribution of developmental alterations to the late disease onset remains to be clarified. Leveraging human pluripotent stem cell-derived brain organoids, we and others are exploring how mHTT affects the developing human brain. These models reveal impaired neural progenitor organization and function, accompanied by a mitochondrial stress response, indicating reduced capacity to manage cellular stress. Enhancing mitochondrial health and promoting neural cell resilience may thus represent potential strategies for improving the brain's compensatory mechanisms, thereby prolonging a healthy state. These insights highlight a potential window of opportunity for therapeutic interventions. Targeting mitochondrial fitness and neurodevelopmental pathways at early stages – long before clinical symptoms emerge – could help prevent or delay disease onset and progression in affected individuals.
Summary: Increasing evidence indicates neurodevelopmental aspects in Huntington's disease. Early interventions promoting healthy brain development and mitochondrial fitness might lead to prevention or delay of the disease pathology.
The traditional view of pathogenesis in Huntington's disease
Huntington's disease (HD) is a devastating neurodegenerative disorder caused by abnormal CAG trinucleotide repeat expansion in the gene huntingtin (HTT) (Bates et al., 2015; The Huntington's Disease Collaborative Research Group, 1993). Humans typically have ten to 35 CAG repeats; in HD, this number can increase to 36 or more (Nance et al., 1998). The disease exhibits an autosomal dominant pattern of inheritance (Ghosh and Tabrizi, 2018) and typically presents in adulthood with progressive basal ganglia atrophy, leading to involuntary jerky movements (chorea) together with cognitive and psychiatric symptoms (Aylward et al., 1997; Ross and Tabrizi, 2011). Neuronal loss appears first to affect striatal projection neurons (SPNs) (Reiner et al., 1988), which are crucial for motor control (Albin et al., 1989), followed by cortical neurons (Cudkowicz and Kowall, 1990).
The prevalent view of the disease mechanisms is that mutant HTT (mHTT) can acquire a toxic gain of function, leading to abnormal protein folding and aggregation (Arrasate and Finkbeiner, 2012; Duyao et al., 1995; Rubinsztein and Carmichael, 2003; Walker, 2007). This interpretation, supported by evidence of pathogenetic improvement following HTT reduction in HD animal models (Yamamoto et al., 2000), led to the development of treatments based on approaches to lower mHTT. However, these strategies have yet to demonstrate functional validity in clinical settings. The GENERATION HD1 trial (NCT03761849) was halted owing to detrimental effects (McColgan et al., 2023), but other trials are still ongoing (e.g. NCT05686551, NCT06254482, NCT06826612, NCT05032196, NCT05822908, NCT06585449, NCT06024265, NCT06873334). Remarkably, the trial NCT05243017 recently reported significantly slower disease progression with HTT-lowering gene therapy (Dolgin, 2025), although the detailed clinical outcomes still need to published. At the same time, given the unclear pathogenicity of mHTT aggregates (Arrasate and Finkbeiner, 2012; Arrasate et al., 2004; Hickman et al., 2022; Kuemmerle et al., 1999; Saudou et al., 1998; Slow et al., 2005), alternative mechanistic hypotheses should be put forward to explain HD pathogenesis.
Recent findings suggest that the instability of the CAG repeat region can cause progressive length increases in particular brain regions (Kacher et al., 2021; Kennedy and Shelbourne, 2000; Swami et al., 2009), leading to selective neuronal death (Handsaker et al., 2025). This age-dependent somatic CAG expansion can take place decades before clinical diagnosis (Scahill et al., 2025) and particularly affects cortico-striatal projections (Pressl et al., 2024). Oxidative damage exacerbates somatic CAG expansion (Jonson et al., 2013; Kovtun et al., 2007), possibly through genome instability and alterations in mismatch-repair genes (Chang et al., 2002; Iyer and Pluciennik, 2021), which can then drive the HD pathogenesis (Wang et al., 2025). Hence, perhaps mHTT is not toxic per se, but can become toxic in certain cell types under certain conditions.
… findings in animal models and in pre-symptomatic HD cases suggest that the neuronal pathology could start early during development
The impact of HD on neurodevelopment
Accumulating evidence demonstrates that wild-type HTT plays a physiological role during brain development (Barnat et al., 2017; Bhide et al., 1996; Reiner et al., 2003). HTT function supports axonal transport (Vitet et al., 2020), axonal growth cone formation (Capizzi et al., 2022), synapse development (McKinstry et al., 2014), neural rosette formation (Sardo et al., 2012), neuronal migration (Tong et al., 2011) and overall neurogenesis (Godin et al., 2010).
The developmental role of HTT is highlighted by the fact that its depletion is embryonic lethal (Nasir et al., 1995; Zeitlin et al., 1995), and its selective inactivation in the brain causes progressive neurodegeneration in mice (Dragatsis et al., 2000). SPNs appear to be particularly sensitive to HTT depletion (Burrus et al., 2020). The presence of HTT might help decrease the cellular toxicity of mHTT (Leavitt et al., 2001) and could protect against excitotoxicity (Leavitt et al., 2006). Transient reduction of HTT during neurodevelopment is sufficient to cause HD-like phenotypes at later stages in mice (Arteaga-Bracho et al., 2016). Therefore, early loss of HTT function could contribute to HD pathogenesis.
Pathological mHTT can also be especially harmful during brain development. mHTT affects progenitor proliferation (Molina-Calavita et al., 2014), as well as migration, axonal growth and maturation of cortical neurons (Barnat et al., 2017; Blockx et al., 2012; Capizzi et al., 2022; McKinstry et al., 2014). During development, mHTT transiently alters the axonal projections and synaptic transmission of SPNs (Lebouc et al., 2025). This early vulnerability might be counteracted by compensatory mechanisms that could become insufficient over time. Indeed, HD-like features are recapitulated in mice by exposure to mHTT selectively during development (Molero et al., 2016).
Clinical studies in individuals with HD have uncovered pre-symptomatic alterations, including reduced growth (Lee et al., 2012), regional brain atrophy (Aylward et al., 2013; Scahill et al., 2013), impairment of synaptic function and cytoskeletal integrity (DiProspero et al., 2004), and defects in executive function (Pfalzer et al., 2023; Tabrizi et al., 2009). The cerebrospinal fluid of pre-symptomatic cases can contain elevated levels of neurofilament light protein, indicative of neuroaxonal damage (Scahill et al., 2025).
Neurodevelopmental abnormalities have also been observed in HD cases (van der Plas et al., 2019). These include developmental malformations, such as heterotopia, resulting from abnormal neuronal migration to the cortex (Hickman et al., 2021; Kubera et al., 2019; van der Plas et al., 2019), abnormal cortical surface (Mangin et al., 2020) and reduction of intracranial volume (Kubera et al., 2019; Mangin et al., 2020; Nopoulos et al., 2011; van der Plas et al., 2019). Cortical cell depletion correlates with transcriptional neurodevelopmental changes (Estevez-Fraga et al., 2023; Scahill et al., 2013). Remarkably, human fetuses carrying mHTT exhibit abnormalities in the developing cortex, with impaired proliferation of neural progenitors and premature differentiation (Barnat et al., 2020).
Collectively, findings in animal models and in pre-symptomatic HD cases suggest that the neuronal pathology could start early during development (Table 1). Loss of wild-type HTT coupled with the presence of pathogenic mHTT might be particularly detrimental in the developing brain, in which physiological HTT function is crucial (Fig. 1).
Table 1.
Evidence of developmental involvement in HD cases and rodent models
| Species | Human/model | Age/disease stage | Phenotypes | Mechanisms | Treatments | References |
|---|---|---|---|---|---|---|
| Human | Aborted fetus | Gestation week 13-16 | Developing cortex abnormality: mislocalization of mHTT and junctional complex proteins, abnormal ciliogenesis and changes in mitosis | NA | NA | Barnat et al., 2020 |
| Human | Postmortem brains | Age 36-75 | Developmental malformations | NA | NA | Hickman et al., 2021 |
| Human | Postmortem brains | Pre-HD and early pathological grade HD (age 7-30) | Decrease in neuronal fiber density and organization in pyramidal cell layers | Abnormal protein expression in synaptic function and cytoskeletal integrity | NA | DiProspero et al., 2004 |
| Human | Post-mortem brains and imaging | Pre-HD (age ∼44) | Cortical cell loss | Disruption of development (especially in astrocytes and endothelial cells) | NA | Estevez-Fraga et al., 2023 |
| Human | Imaging | Pre-HD (age ∼42) | Abnormal development: smaller intracranial volume | NA | NA | Nopoulos et al., 2011 |
| Human | Imaging | Early stage HD (age ∼42) | Brain sulcus abnormality | NA | NA | Mangin et al., 2020 |
| Human | Imaging | Pre-HD (age ∼39) | Decreased cortical folding complexity | NA | NA | Kubera et al., 2019 |
| Human | Imaging | Age 6-18 | Initial striatum and globus pallidus hypertrophy and more rapid volume decline | NA | NA | van der Plas et al., 2019 |
| Human | Imaging and functional assessment | Pre-HD (age ∼41) | Brain volume change, impairment in voluntary motor and oculomotor tasks, cognitive and neuropsychiatric function | NA | NA | Tabrizi et al., 2009 |
| Human | Imaging and functional assessment | Pre-HD (age ∼40) | Decrease in caudate, putamen and globus pallidus volumes consistently correlated with cognitive and motor, but not psychiatric or functional, measures in pre-HD group | NA | NA | Aylward et al., 2013 |
| Human | Imaging and functional assessment | Pre-HD (age ∼41) and early HD (age ∼49) | Significant associations between regional brain atrophy and decline in a range of clinical modalities | NA | NA | Scahill et al., 2013 |
| Human | Cognitive assessment | Age ∼25 | Impairments in executive function | NA | NA | Pfalzer et al., 2023 |
| Human | Body fluid, imaging and blood DNA | Age 18-40 | Increase in neurofilament light protein, decreased proenkephalin in cerebrospinal fluid, caudate and putamen atrophy, blood somatic CAG repeats expansion ratio increased in HD gene-expanded group | NA | NA | Scahill et al., 2025 |
| Human | Growth parameters | Age ∼13 | Weight decrease, body mass index decrease and head circumference decrease in gene-expanded children | NA | NA | Lee et al., 2012 |
| Mouse | HdhQ111/Q111 mouse | STHdhQ111/Q111 cell line, E10.5, E14.5 and P21 | Spindle orientation of dividing progenitors and cerebral cortex thickness are altered in HdhQ111/Q111 embryos | Alteration of the localization of dynein, NUMA1 and the p150Glued subunit of dynactin to the spindle pole and cell cortex, and of CLIP170 and p150Glued to microtubule plus-ends | The serine/threonine kinase Akt, which regulates HTT function, rescued the spindle misorientation in cultured cells and in mice | Molina-Calavita et al., 2014 |
| Mouse | HdhQ111/Q111 mouse embryo | E12.5-E17.5 | Impairment of developmental stem cell-mediated striatal neurogenesis in HD mouse embryos | Sox2, Stat3 and Nanog upregulation in striatal medium spiny neurons | NA | Molero et al., 2009 |
| Mouse | HdhQ111/Q111 mouse embryo | E13.5-E15.5 | Developing cortex abnormality: mislocalization of mHTT and junctional complex proteins, defects in neural progenitor cell polarity and differentiation, abnormal ciliogenesis, and changes in mitosis and cell cycle progression | NA | NA | Barnat et al., 2020 |
| Mouse | HdhneoQ20/null mouse | E15.5 and adult | Severely reduced levels (∼15%) of HTT only during development, subpallial heterotopias, aberrant striatal maturation and deregulation of gliogenesis in embryo stage, as well as late-life striatal and cortical neuronal degeneration, neurological and skeletal muscle alterations, white matter tract impairments and axonal degeneration in adult phase | NA | NA | Arteaga-Bracho et al., 2016 |
| Mouse | HdhQ7/Q111 newborn pup and in vitro neuron | P0-P21 | Limited growth of layer II/III neurons due to defects in microtubule bundling within the axonal growth cone | Downregulated NUMA1 by miR-124 | AntagomiR-124 upregulated NUMA1; epothilone B restored microtubule organization | Capizzi et al., 2022 |
| Mouse | HdhQ7/Q111 mouse | P1-P26 and adult | Reduced dendritic growth and synaptic activity, and increased neuronal excitability in the neonatal cortex during the first postnatal week | NA | Ampakine CX516 treatment restored dendritic arborization and sensorimotor function in HD pups and delayed HD symptoms in the adults | Braz et al., 2022 |
| Mouse | BACHD:CAG-CreERT2 mouse | P21 and adult | Conditional mHTT expression during development causes striatal neurodegeneration, excitotoxicity, damaged electrophysiological activity, circuit connectivity and plasticity | NA | NA | Molero et al., 2016 |
| Rat | Transgenic HD rat with 51 CAG repeats | P15, P30 | Abnormal brain microstructure in brain imaging, reduced and less ordered fiber staining | NA | NA | Blockx et al., 2012 |
Akt, RAC-alpha serine/threonine-protein kinase; CLIP170, cytoplasmic linker protein 170; E, embryonic day; HD, Huntington's disease; HTT, huntingtin; mHTT, mutant huntingtin; NA, not applicable; NUMA1, nuclear mitotic apparatus protein 1; P, postnatal day; Sox2, SRY-box 2; Stat3, signal transducer and activator of transcription 3.
Fig. 1.
Harnessing altered neurodevelopment in Huntington's disease for early treatment strategies. Evidence from patients, animal models and human stem cell models demonstrate aberrant brain development occurring in Huntington's disease (HD). These demonstrations could help uncover alternative therapeutic avenues to promote brain resilience, aiming to maintain the compensatory mechanisms of the developing human brain as much as possible. Among these mechanisms, we highlight cell-autonomous approaches, for example based on modulating stress response mechanisms, and non-cell-autonomous approaches that could target inter-cell communication. Collectively, we propose the preservation of mitochondrial function as a central mechanism in early interventions for HD. ATM, ataxia telangiectasia mutated; CHCHD2, coiled-coil-helix-coiled-coil-helix domain containing 2; DRP1, dynamin-1-like protein; HD, Huntington's disease; HSF1, heat shock transcription factor 1; mHTT, mutant huntingtin; wtHTT, wild-type huntingtin.
Human stem cell models of HD highlight neurodevelopmental aspects of the disease
The establishment of human stem cell models of HD further supports the idea that the disease disrupts human brain development (Kaye et al., 2022; Wiatr et al., 2018) (Table 2). The transcriptional signature of human HD neurons confirms the dysregulation of neurodevelopmental genes (Aguirre et al., 2023 preprint; An et al., 2012; Cohen-Carmon et al., 2020; HD iPSC Consortium, 2017; Mehta et al., 2018; Ring et al., 2015; Świtońska et al., 2018). The presence of mHTT leads to impaired rosette formation and neuronal generation (Mattis et al., 2015; Mehta et al., 2018; Monk et al., 2021; Ruzo et al., 2018; Smith-Geater et al., 2020; Xu et al., 2017). In line with the suggested role of HTT in axonal growth and synaptogenesis (Capizzi et al., 2022; McKinstry et al., 2014), human HD neurons show synaptic dysfunctions (Dinamarca et al., 2022; HD iPSC Consortium, 2012) and defective neuronal branching (Guo et al., 2013; Mehta et al., 2018), with branching progressively decreasing in correlation with increased CAG repeats (Mehta et al., 2018). Human stem cell models of HD recapitulate a dominant-negative effect of mHTT on its wild-type counterpart, suggesting that mHTT hampers the function of wild-type HTT during development (Laundos et al., 2023; Ruzo et al., 2018). Lowering wild-type HTT in human neurons is sufficient to disrupt neuronal maturation and synaptic activity (Louçã et al., 2024), as well as neurite outgrowth capacity (Lisowski et al., 2024).
Table 2.
Evidence of developmental involvement in human stem cell models
| Stem cells | Model | Phenotypes | Mechanisms | Treatments | References |
|---|---|---|---|---|---|
| Patient hiPSCs with 71 and 109 CAG repeats | 2D hiPSCs | NA | Dysregulated transcripts in DNA damage, apoptosis, cell polarization, transcription regulators of development; altered TP53 and ZFP30 protein expression | NA | Świtońska et al., 2018 |
| Patient hiPSCs with 72 CAG repeats | 2D NSCs | Increased susceptibility to cell death and altered mitochondrial bioenergetics | Dysregulated pathogenic HD signaling pathways (cadherin, TGF-β, BDNF, SMAD and caspase activation) | Replacement of the expanded CAG repeat with a normal repeat reversed disease phenotypes | An et al., 2012; Ring et al., 2015 |
| Patient hiPSCs with 77, 109 and 180 CAG repeats | 2D NPCs | Increased death following BDNF withdrawal | TrkB receptor downregulation and increased glutamate toxicity caused by upregulated NR2B | Activating TrkB and blocking glutamate signaling reversed the cell death phenotype | Mattis et al., 2015 |
| Patient hiPSCs with CAG180 | 2D NPCs and neural cells | Impaired neural rosette formation, increased susceptibility to growth factor withdrawal and deficits in mitochondrial respiration in HD hiPSC-derived neural cells | Gene expression differences including altered CHCHD2 expression | Correction of HTT mutation reversed HD phenotypes | Xu et al., 2017 |
| Patient hiPSCs with 46, 53, 66, 71 and 109 CAG repeats | 2D NSCs and striatal neurons | Persistent cyclin D1+ NSC population in HD striatal neurons | Upregulation of cell-cycle-related genes and transcription factors | Inhibition of the WNT signaling pathway abrogates NSC populations in HD neuronal cultures | Smith-Geater et al., 2020 |
| Patient hiPSCs with 41Q, 43Q, 44Q, 57Q | 2D striatal neurons | Ubiquitinated polyglutamine aggregates HD striatal neurons, impaired neuronal maturation | Reduced BDNF expression | NA | Monk et al., 2021 |
| Patient hiPSC with 46, 53, 60, 109 CAG repeats | 2D neural cells | Increased susceptibility to BDNF withdrawal, cell death, longer neurite-like process | Upregulation of genes in glutamate and GABA signaling, axonal guidance, and calcium influx; altered epigenetic program | Isx-9 treatment improves CAG repeat-associated phenotypes | HD iPSC Consortium, 2017 |
| Edited hESCs lines with 20, 22, 42, 48, 56, 67, 72 CAG repeats | 2D neural cells | Giant multinucleated hESC-generated telencephalic neurons at an abundance directly proportional to CAG repeat length | Chromosomal instability and failed cytokinesis over multiple rounds of DNA replication | NA | Ruzo et al., 2018 |
| Edited hiPSCs with 72Q | 2D neurons | Abnormal synapse and delayed neural maturation in hiPSC-derived neurons | NA | NA | Dinamarca et al., 2022 |
| Patient hiPSCs with 77, 109 and 180 CAG repeats | 2D cortical neurons | Delayed functional maturation, shorter neuritic extensions in HD neurons | Altered transcriptomics in neural development | NA | Mehta et al., 2018 |
| Patient hiPSCs with 41, 45, 46 and 48 CAG repeats | 2D striatal GABAergic neurons | NA | Altered IGF1 and genes involved in neurogenesis and nervous system development under progerin treatment | NA | Cohen-Carmon et al., 2020 |
| Edited hESCs lines with 72 CAG expansion | 2D hESCs and 3D neuruloids | Aberrant impaired polarity and receptor mislocalization in HD hESCs, and failed compaction of the central neural ectodermal domain and in the reduction of the neural crest linage in HD neuruloids | NA | Wild-type HTT overexpression partially reversed the HD phenotypes | Laundos et al., 2023 |
| Patient hiPSCs with 60, 109 and 180 CAG repeats | 2D striatal, cortical neurons and 3D cerebral organoids | Faulty neuronal determination and cell polarization in HD organoids | NA | mHTT repressor and GI254023X treatment recovered striatal identity | Conforti et al., 2018 |
| Patient hiPSCs with 18Q, 71Q and 109Q | 2D NSC and 3D forebrain organoids | Dysregulated cell cycle in HD NSC and premature neuronal differentiation in HD forebrain organoids | Increased activity of the ATM–p53 pathway | ATM antagonists partially rescued the blunted neuroepithelial progenitor expansion | Zhang et al., 2019 preprint |
| Edited hiPSCs with 70Q and patient hiPSCs with 44Q, 58Q, 180Q | 2D NPCs, neurons, and 3D cerebral, cortical and midbrain organoids | Aberrant development of cerebral organoids with loss of neural progenitor organization | Downregulation of CHCHD2, increase in mitochondrial integrated stress response, defective mitochondrial morpho-dynamics and aberrant metabolic programming | CHCHD2 overexpression or polyQ removal corrected mitochondrial defects | Lisowski et al., 2024 |
| Edited hESCs with 56 and 72 CAG expansions | 3D neuruloids | Abnormal neuruloid morphogenesis | Downregulation of WNT/PCP pathway, cytoskeleton-associated genes and actin–myosin contraction genes | NA | Haremaki et al., 2019 |
| Edited hESCs with 48, 56 and 72 CAG repeats | 3D mono-cultures and mosaic telencephalic organoids | Altered differentiation pattern, self-organization and ventral maturation in mono-culture HD telencephalic organoids | Weakened intercellular communication in HD | HD cells, especially ventral neurons, recover maturation and fate determination when grown with control cells in mosaic HD telencephalic organoids | Galimberti et al., 2024 |
| Patient hiPSCs with 55 and 59 CAG expansions | 3D striatal organoids | Smaller size and impaired differentiation of striatal organoids, without MSN maturation defect | NA | NA | Chen et al., 2022 |
| Patient hiPSCs with 75 CAG repeats | 3D striatal organoids | More neuron death in striatal organoids | HSF1 accumulated in mitochondria causing mitochondrial fission and mtDNA deletion | The unique peptide inhibitor DH1 suppressed localization of HSF1 in mitochondria, mitochondrial dysfunction, and cell death | Liu et al., 2022 |
| Patient hiPSCs with 55 and 59 CAG repeats | 3D cortical, and cortico-striatal assembloids | Deficient progenitor proliferation, premature neurogenesis, deficiency of cortical projection neurons and laminations, delayed maturation of postmitotic neurons, aberrantly early HD cortical projections targeting striatal organoids | Deficient Golgi apparatus, clathrin+ vesicles and junctional complex. Endogenous mHTT lowered Golgi recruiting ARF1 | NA | Liu et al., 2024a,b |
| Patient hiPSCs with 75 CAG repeats and two patient hiPSCs not specified | 3D striatal, midbrain organoid and striato-nigral assembloids | Reciprocal projection defects in striatum-like and midbrain substantial nigra-like assembloids | NA | BDNF rescued reciprocal projection and calcium signaling | Wu et al., 2024 |
ARF1, ADP-ribosylation factor; ATM, ataxia telangiectasia mutated; BDNF, brain-derived neurotrophic factor; CHCHD2, coiled-coil-helix-coiled-coil-helix domain containing 2; GABA, gamma-aminobutyric acid; HD, Huntington's disease; hESC, human embryonic stem cell; hiPSC, human induced pluripotent stem cell; HSF1, heat shock transcription factor 1; HTT, huntingtin; IGF1, insulin-like growth factor 1; Isx-9, isoxazole 9; mHTT, mutant huntingtin; MSN, medium spiny neuron; mtDNA, mitochondrial DNA; NA, not applicable; NR2B, N-methyl D-aspartate receptor subtype 2B (also known as GRIN2B); NSC, neural stem cell; NPC, neural progenitor cell; ; PCP, planar cell polarity; SMAD, mothers against decapentaplegic homolog; TP53, tumor protein P53; TrkB, tropomyosin receptor kinase B (also known as NTRK2); TGF-β, transforming growth factor beta; ZFP30, zinc finger protein 30.
Recent advances in induced pluripotent stem cell (iPSC)-derived three-dimensional (3D) culture allow the generation of brain organoids, which may recapitulate key aspects of the complex brain architecture, including cellular composition and interactions (Birtele et al., 2025). Organoids representative of distinct brain regions (Del Dosso et al., 2020) can also be merged to investigate neuronal projections and circuit formation (Onesto et al., 2024). Currently, brain organoids lack non-ectodermal cells, such as vasculature and microglia, reducing their maturation and their utility in studying neuroinflammation (Andrews and Kriegstein, 2022). Furthermore, as they reflect fetal or neonatal stages of development, they cannot address aging-related aspects (Andrews and Kriegstein, 2022). Nonetheless, these complex model systems could be instrumental in providing insights into the impact of wild-type HTT and mHTT on human brain development.
HD cortical organoids show aberrant neuronal determination (Conforti et al., 2018). Striatal assembloids generated by fusing striatal organoids with cortical or midbrain organoids to investigate striatal connectivity (Chen et al., 2022) exhibit defective SPN projections when carrying mHTT (Wu et al., 2024). HD neuruloids modeling neural tube formation develop alterations (Haremaki et al., 2019), potentially suggesting that mHTT disrupts early neural commitment. Accordingly, loss of neural progenitor organization occurs within mHTT-carrying telencephalic organoids (Galimberti et al., 2024), cortical organoids (Lisowski et al., 2024) and whole-brain cerebral organoids (Zhang et al., 2019 preprint). Defective junctional complexes between neighboring progenitors observed in HD cortical organoids (Lisowski et al., 2024; Liu et al., 2024b) could contribute to disrupt spatiotemporal corticogenesis (Liu et al., 2024b).
Altogether, these findings show that human stem cell models of HD demonstrate impairment of central nervous system development (Table 2).
Accounting for the impact of HD on neurodevelopment could lead to the development of innovative therapeutic strategies
Leveraging compensatory mechanisms for HD therapeutics
Accounting for the impact of HD on neurodevelopment could lead to the development of innovative therapeutic strategies (Humbert, 2010; Mehler and Gokhan, 2000; van der Plas et al., 2020) (Fig. 1). Indeed, early correction of circuit defects in HD mice can delay the brain pathology (Braz et al., 2022). At the same time, this shift in focus brings several challenges.
A key question relates to the compensatory mechanisms that allow the brain of individuals with HD to preserve functionality for a long time. Such mechanisms could influence whether CAG repeats present in the genomes of individuals who may develop disease symptoms are further expanded in certain somatic cells owing to genomic instability (Handsaker et al., 2025). In mice, early defects in SPN projection are normalized during late development (Lebouc et al., 2025), indicating the existence of processes that could possibly be preserved or enhanced therapeutically to postpone the disease onset. However, it is not trivial to distinguish disease-driving alterations from strategies that the body has established to compensate for the primary genetic defect. Attempts to untangle these processes in flies and human HD neurons have highlighted the modulation of calcium and synaptic function as being involved in this compensation (Al-Ramahi et al., 2018). Additional efforts should be undertaken to uncover compensatory mechanisms and distinguish them from driver mechanisms. This is crucial when developing therapies in order to avoid disrupting pathways that have already been effectively counteracted by the body.
Compensatory mechanisms may include cell-autonomous pathways that directly affect the behavior of a cell (Berto et al., 2025). For example, early dysregulation of the gene coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) can be seen in HD mice, human HD neurons (Liu et al., 2024a) and HD brain organoids (Lisowski et al., 2024; Liu et al., 2024a). CHCHD2 regulates mitochondrial function and stress responses (Ruan et al., 2022; Zhou et al., 2020) and may thus help maintain a cell-autonomous, compensatory, protective response in bioenergetically impaired HD neurons. As oxidative damage may contribute to somatic CAG expansion (Kovtun et al., 2007), measures preserving redox balance and mitochondrial fitness could be beneficial in maintaining a compensated state.
Non-cell-autonomous mechanisms, i.e. involving neighboring cells or extracellular signals (Berto et al., 2025), might also contribute to preserving brain function in HD. For example, abnormal development of some brain regions may be compensated for by other brain regions (Catlin and Schaner Tooley, 2024; van der Plas et al., 2020). The cerebellum, which appears spared in early HD cases (Aylward, 2007), might compensate for faulty striatal function by preventing involuntary movements (van der Plas et al., 2020). However, this compensatory rerouting of circuitry might not persist over time, as the volume of the cerebellum decreases in older HD cases (Sarappa et al., 2017; Tereshchenko et al., 2019). Brain organoids grown as mosaic co-culture of healthy and HD cells demonstrate that the faulty developmental trajectory of HD cells can be restored by the presence of healthy cells. This further supports the existence of non-cell-autonomous compensatory mechanisms that may be explored as potential interventions (Galimberti et al., 2024). Additional roles in this compensation may be played by glial cells (Benraiss et al., 2016) or by transfer of mitochondria, which could modulate energy homeostasis (Geng et al., 2023) and inflammation (Joshi et al., 2019).
… we propose that harnessing compensatory pathways promoting mitochondrial fitness could represent a therapeutic strategy for HD
Targeting HD at the early stage to preserve mitochondrial fitness
Recent findings highlight that mitochondrial function is crucial for human brain development (Brunetti et al., 2021; Iwata et al., 2023, 2020). Mitochondrial defects are present in human stem cell-derived HD neurons (Chae et al., 2012; Feyeux et al., 2012; HD iPSC Consortium, 2012, 2020; Lopes et al., 2020; McQuade et al., 2014; Nekrasov and Kiselev, 2018; Szlachcic et al., 2015; Xu et al., 2017). Modulating genes such as CHCHD2 that regulate mitochondrial stress could be beneficial in HD neural cells (Lisowski et al., 2024). Hence, we propose that harnessing compensatory pathways promoting mitochondrial fitness could represent a therapeutic strategy for HD (Fig. 1).
Metabolic disturbances are known to occur in individuals with HD who may experience a state of catabolism, in which there is increased energy expenditure and weight loss irrespective of caloric intake (Dubinsky, 2017; Gilbert, 2009; Ogilvie et al., 2021; van der Burg et al., 2017). Metabolic impairment – including reduced glucose metabolism in the brain (Grafton et al., 1992), defects in cholesterol and fatty acid metabolism (Block et al., 2010), and skeletal muscle wastage (Zielonka et al., 2014) – can occur years before the neuropathological manifestations (Singh and Agrawal, 2022). Hence, it is possible that metabolic imbalance and related oxidative stress could contribute to the loss of compensation in HD over time.
In agreement with this view, several treatment options put forward in HD models may work through improving mitochondrial health and preventing cellular stress. For example, inhibition of DRP1 (also known as DNM1L), a mitochondrial fission protein that directly binds mHTT (Song et al., 2011), ameliorates neurite outgrowth capacity and survival in human HD neurons and reduces mortality in HD mice (Guo et al., 2013). Ataxia-telangiectasia mutated (ATM), a key signaling molecule activated in response to oxidative stress and DNA damage, may be hyperactive in HD. Reduction of ATM lowers mHTT toxicity in HD models (Lu et al., 2014) and improves neural progenitor expansion in HD brain organoids (Zhang et al., 2019 preprint). The oxidative-damage-related cytokine, N6-furfuryladenine (N6FFA), can reverse HD-like phenotypes in mice (Bowie et al., 2018). The fatty acid synthesis inhibitor cerulenin ameliorates the disease-associated transcriptional signature of human SPNs (Aguirre et al., 2023 preprint). Inhibition of mitochondrially located heat shock transcription factor 1 (HSF1) can restore mitochondrial morphology and neuronal outgrowth in HD striatal organoids and improves the behavioral function of HD mice (Liu et al., 2022).
Conclusions
Here, we have discussed how understanding the impact of neurodevelopmental alterations in HD pathogenesis could lead to the establishment of innovative interventions. Potential therapeutics could be developed by harnessing endogenous compensatory mechanisms. One such strategy could involve preserving mitochondrial fitness to avoid DNA damage and cellular stress, which could otherwise exacerbate somatic CAG expansion in susceptible brain regions over time (Jonson et al., 2013; Kovtun et al., 2007; Wang et al., 2025). Several challenges still lie ahead, including better understanding the potential early intervention strategies and defining specific therapeutic windows. Nonetheless, the compelling evidence indicating the importance of brain development in HD pathogenesis should prompt us to determine whether it may be possible to target these early defects to delay or even prevent the neurological deterioration in affected individuals.
Supplementary Material
Footnotes
Funding
We acknowledge financial support from Deutsche Forschungsgemeinschaft (PR1527/13-1, PR1527/14-1, PR1527/15-1, PR1527/6-1) and the European Commission's HORIZON EUROPE Framework Programme (SIMPATHIC #101080249). W.X. is supported by a fellowship from China Scholarship Council.
References
- Aguirre, C. G., Tshilenge, K.-T., Battistoni, E., Lopez-Ramirez, A., Naphade, S., Perez, K., Song, S., Mooney, S. D., Melov, S., Ehrlich, M. E.et al. (2023). Transcriptomic characterization reveals disrupted medium spiny neuron trajectories in huntington's disease and possible therapeutic avenues. bioRxiv 2023.04.30.538872. 10.1101/2023.04.30.538872 [DOI] [Google Scholar]
- Al-Ramahi, I., Lu, B., Di Paola, S., Pang, K., de Haro, M., Peluso, I., Gallego-Flores, T., Malik, N. T., Erikson, K., Bleiberg, B. A.et al. (2018). High-throughput functional analysis distinguishes pathogenic, nonpathogenic, and compensatory transcriptional changes in neurodegeneration. Cell Syst. 7, 28-40.e4. 10.1016/j.cels.2018.05.010 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Albin, R. L., Young, A. B. and Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366-375. 10.1016/0166-2236(89)90074-X [DOI] [PubMed] [Google Scholar]
- An, M. C., Zhang, N., Scott, G., Montoro, D., Wittkop, T., Mooney, S., Melov, S. and Ellerby, L. M. (2012). Genetic correction of Huntington's disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 11, 253-263. 10.1016/j.stem.2012.04.026 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andrews, M. G. and Kriegstein, A. R. (2022). Challenges of organoid research. Annu. Rev. Neurosci. 45, 23-39. 10.1146/annurev-neuro-111020-090812 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arrasate, M. and Finkbeiner, S. (2012). Protein aggregates in Huntington's disease. Exp. Neurol. 238, 1-11. 10.1016/j.expneurol.2011.12.013 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. and Finkbeiner, S. (2004). Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805-810. 10.1038/nature02998 [DOI] [PubMed] [Google Scholar]
- Arteaga-Bracho, E. E., Gulinello, M., Winchester, M. L., Pichamoorthy, N., Petronglo, J. R., Zambrano, A. D., Inocencio, J., De Jesus, C. D., Louie, J. O., Gokhan, S.et al. (2016). Postnatal and adult consequences of loss of huntingtin during development: Implications for Huntington's disease. Neurobiol. Dis. 96, 144-155. 10.1016/j.nbd.2016.09.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aylward, E. H. (2007). Change in MRI striatal volumes as a biomarker in preclinical Huntington's disease. Brain Res. Bull. 72, 152-158. 10.1016/j.brainresbull.2006.10.028 [DOI] [PubMed] [Google Scholar]
- Aylward, E. H., Li, Q., Stine, O. C., Ranen, N., Sherr, M., Barta, P. E., Bylsma, F. W., Pearlson, G. D. and Ross, C. A. (1997). Longitudinal change in basal ganglia volume in patients with Huntington's disease. Neurology 48, 394-399. 10.1212/WNL.48.2.394 [DOI] [PubMed] [Google Scholar]
- Aylward, E. H., Harrington, D. L., Mills, J. A., Nopoulos, P. C., Ross, C. A., Long, J. D., Liu, D., Westervelt, H. K. and Paulsen, J. S. (2013). Regional atrophy associated with cognitive and motor function in prodromal Huntington disease. J. Huntingtons Dis. 2, 477-489. 10.3233/JHD-130076 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnat, M., Le Friec, J., Benstaali, C. and Humbert, S. (2017). Huntingtin-mediated multipolar-bipolar transition of newborn cortical neurons is critical for their postnatal neuronal morphology. Neuron 93, 99-114. 10.1016/j.neuron.2016.11.035 [DOI] [PubMed] [Google Scholar]
- Barnat, M., Capizzi, M., Aparicio, E., Boluda, S., Wennagel, D., Kacher, R., Kassem, R., Lenoir, S., Agasse, F., Braz, B. Y.et al. (2020). Huntington's disease alters human neurodevelopment. Science 369, 787-793. 10.1126/science.aax3338 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bates, G. P., Dorsey, R., Gusella, J. F., Hayden, M. R., Kay, C., Leavitt, B. R., Nance, M., Ross, C. A., Scahill, R. I., Wetzel, R.et al. (2015). Huntington disease. Nat. Rev. Dis. Primers 1, 15005. 10.1038/nrdp.2015.5 [DOI] [PubMed] [Google Scholar]
- Benraiss, A., Wang, S., Herrlinger, S., Li, X., Chandler-Militello, D., Mauceri, J., Burm, H. B., Toner, M., Osipovitch, M., Jim Xu, Q.et al. (2016). Human glia can both induce and rescue aspects of disease phenotype in Huntington disease. Nat. Commun. 7, 11758. 10.1038/ncomms11758 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berto, G., Pravata, M. V. and Cappello, S. (2025). Cellular interplay in brain organoids: Connecting cell-autonomous and non-cell-autonomous mechanisms in neurodevelopmental disease. Curr. Opin. Neurobiol. 92, 103018. 10.1016/j.conb.2025.103018 [DOI] [PubMed] [Google Scholar]
- Bhide, P. G., Day, M., Sapp, E., Schwarz, C., Sheth, A., Kim, J., Young, A. B., Penney, J., Golden, J., Aronin, N.et al. (1996). Expression of normal and mutant huntingtin in the developing brain. J. Neurosci. 16, 5523-5535. 10.1523/JNEUROSCI.16-17-05523.1996 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birtele, M., Lancaster, M. and Quadrato, G. (2025). Modelling human brain development and disease with organoids. Nat. Rev. Mol. Cell Biol. 26, 389-412. 10.1038/s41580-024-00804-1 [DOI] [PubMed] [Google Scholar]
- Block, R. C., Dorsey, E. R., Beck, C. A., Brenna, J. T. and Shoulson, I. (2010). Altered cholesterol and fatty acid metabolism in Huntington disease. J. Clin. Lipidol. 4, 17-23. 10.1016/j.jacl.2009.11.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blockx, I., De Groof, G., Verhoye, M., Van Audekerke, J., Raber, K., Poot, D., Sijbers, J., Osmand, A. P., Von Hörsten, S. and Van der Linden, A. (2012). Microstructural changes observed with DKI in a transgenic Huntington rat model: evidence for abnormal neurodevelopment. Neuroimage 59, 957-967. 10.1016/j.neuroimage.2011.08.062 [DOI] [PubMed] [Google Scholar]
- Bowie, L. E., Maiuri, T., Alpaugh, M., Gabriel, M., Arbez, N., Galleguillos, D., Hung, C. L. K., Patel, S., Xia, J., Hertz, N. T.et al. (2018). N6-Furfuryladenine is protective in Huntington's disease models by signaling huntingtin phosphorylation. Proc. Natl. Acad. Sci. USA 115, E7081-e7090. 10.1073/pnas.1801772115 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Braz, B. Y., Wennagel, D., Ratié, L., de Souza, D. A. R., Deloulme, J. C., Barbier, E. L., Buisson, A., Lanté, F. and Humbert, S. (2022). Treating early postnatal circuit defect delays Huntington's disease onset and pathology in mice. Science 377, eabq5011. 10.1126/science.abq5011 [DOI] [PubMed] [Google Scholar]
- Brunetti, D., Dykstra, W., Le, S., Zink, A. and Prigione, A. (2021). Mitochondria in neurogenesis: implications for mitochondrial diseases. Stem Cells 39, 1289-1297. 10.1002/stem.3425 [DOI] [PubMed] [Google Scholar]
- Burrus, C. J., McKinstry, S. U., Kim, N., Ozlu, M. I., Santoki, A. V., Fang, F. Y., Ma, A., Karadeniz, Y. B., Worthington, A. K., Dragatsis, I.et al. (2020). Striatal projection neurons require huntingtin for synaptic connectivity and survival. Cell Rep. 30, 642-657.e6. 10.1016/j.celrep.2019.12.069 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capizzi, M., Carpentier, R., Denarier, E., Adrait, A., Kassem, R., Mapelli, M., Couté, Y. and Humbert, S. (2022). Developmental defects in Huntington's disease show that axonal growth and microtubule reorganization require NUMA1. Neuron 110, 36-50.e5. 10.1016/j.neuron.2021.10.033 [DOI] [PubMed] [Google Scholar]
- Catlin, J. P. and Schaner Tooley, C. E. (2024). Exploring potential developmental origins of common neurodegenerative disorders. Biochem. Soc. Trans. 52, 1035-1044. 10.1042/BST20230422 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chae, J. I., Kim, D. W., Lee, N., Jeon, Y. J., Jeon, I., Kwon, J., Kim, J., Soh, Y., Lee, D. S., Seo, K. S.et al. (2012). Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington's disease patient. Biochem. J. 446, 359-371. 10.1042/BJ20111495 [DOI] [PubMed] [Google Scholar]
- Chang, C. L., Marra, G., Chauhan, D. P., Ha, H. T., Chang, D. K., Ricciardiello, L., Randolph, A., Carethers, J. M. and Boland, C. R. (2002). Oxidative stress inactivates the human DNA mismatch repair system. Am. J. Physiol. Cell Physiol. 283, C148-C154. 10.1152/ajpcell.00422.2001 [DOI] [PubMed] [Google Scholar]
- Chen, X., Saiyin, H., Liu, Y., Wang, Y., Li, X., Ji, R. and Ma, L. (2022). Human striatal organoids derived from pluripotent stem cells recapitulate striatal development and compartments. PLoS Biol. 20, e3001868. 10.1371/journal.pbio.3001868 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen-Carmon, D., Sorek, M., Lerner, V., Divya, M. S., Nissim-Rafinia, M., Yarom, Y. and Meshorer, E. (2020). Progerin-induced transcriptional changes in Huntington's disease human pluripotent stem cell-derived neurons. Mol. Neurobiol. 57, 1768-1777. 10.1007/s12035-019-01839-8 [DOI] [PubMed] [Google Scholar]
- Conforti, P., Besusso, D., Bocchi, V. D., Faedo, A., Cesana, E., Rossetti, G., Ranzani, V., Svendsen, C. N., Thompson, L. M., Toselli, M.et al. (2018). Faulty neuronal determination and cell polarization are reverted by modulating HD early phenotypes. Proc. Natl. Acad. Sci. USA 115, E762-e771. 10.1073/pnas.1715865115 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cudkowicz, M. and Kowall, N. W. (1990). Degeneration of pyramidal projection neurons in Huntington's disease cortex. Ann. Neurol. 27, 200-204. 10.1002/ana.410270217 [DOI] [PubMed] [Google Scholar]
- Del Dosso, A., Urenda, J. P., Nguyen, T. and Quadrato, G. (2020). Upgrading the physiological relevance of human brain organoids. Neuron 107, 1014-1028. 10.1016/j.neuron.2020.08.029 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dinamarca, M. C., Colombo, L., Tousiaki, N. E., Müller, M. and Pecho-Vrieseling, E. (2022). Synaptic and functional alterations in the development of mutant huntingtin expressing hiPSC-derived neurons. Front. Mol. Biosci. 9, 916019. 10.3389/fmolb.2022.916019 [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiProspero, N. A., Chen, E. Y., Charles, V., Plomann, M., Kordower, J. H. and Tagle, D. A. (2004). Early changes in Huntington's disease patient brains involve alterations in cytoskeletal and synaptic elements. J. Neurocytol. 33, 517-533. 10.1007/s11068-004-0514-8 [DOI] [PubMed] [Google Scholar]
- Dolgin, E. (2025). Huntington's disease treated for first time using gene therapy. Nature 646, 15. 10.1038/d41586-025-03139-9 [DOI] [PubMed] [Google Scholar]
- Dragatsis, I., Levine, M. S. and Zeitlin, S. (2000). Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat. Genet. 26, 300-306. 10.1038/81593 [DOI] [PubMed] [Google Scholar]
- Dubinsky, J. M. (2017). Towards an understanding of energy impairment in Huntington's disease brain. J. Huntingtons Dis. 6, 267-302. 10.3233/JHD-170264 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duyao, M. P., Auerbach, A. B., Ryan, A., Persichetti, F., Barnes, G. T., McNeil, S. M., Ge, P., Vonsattel, J. P., Gusella, J. F., Joyner, A. L.et al. (1995). Inactivation of the mouse Huntington's disease gene homolog Hdh. Science 269, 407-410. 10.1126/science.7618107 [DOI] [PubMed] [Google Scholar]
- Estevez-Fraga, C., Altmann, A., Parker, C. S., Scahill, R. I., Costa, B., Chen, Z., Manzoni, C., Zarkali, A., Durr, A., Roos, R. A. C.et al. (2023). Genetic topography and cortical cell loss in Huntington's disease link development and neurodegeneration. Brain 146, 4532-4546. 10.1093/brain/awad275 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feyeux, M., Bourgois-Rocha, F., Redfern, A., Giles, P., Lefort, N., Aubert, S., Bonnefond, C., Bugi, A., Ruiz, M., Deglon, N.et al. (2012). Early transcriptional changes linked to naturally occurring Huntington's disease mutations in neural derivatives of human embryonic stem cells. Hum. Mol. Genet. 21, 3883-3895. 10.1093/hmg/dds216 [DOI] [PubMed] [Google Scholar]
- Galimberti, M., Nucera, M. R., Bocchi, V. D., Conforti, P., Vezzoli, E., Cereda, M., Maffezzini, C., Iennaco, R., Scolz, A., Falqui, A.et al. (2024). Huntington's disease cellular phenotypes are rescued non-cell autonomously by healthy cells in mosaic telencephalic organoids. Nat. Commun. 15, 6534. 10.1038/s41467-024-50877-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geng, Z., Guan, S., Wang, S., Yu, Z., Liu, T., Du, S. and Zhu, C. (2023). Intercellular mitochondrial transfer in the brain, a new perspective for targeted treatment of central nervous system diseases. CNS Neurosci. Ther. 29, 3121-3135. 10.1111/cns.14344 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghosh, R. and Tabrizi, S. J. (2018). Huntington disease. Handb. Clin. Neurol. 147, 255-278. 10.1016/B978-0-444-63233-3.00017-8 [DOI] [PubMed] [Google Scholar]
- Gilbert, G. J. (2009). Weight loss in Huntington disease increases with higher CAG repeat number. Neurology 73, 572; author reply 572. 10.1212/WNL.0b013e3181af0cf4 [DOI] [PubMed] [Google Scholar]
- Godin, J. D., Colombo, K., Molina-Calavita, M., Keryer, G., Zala, D., Charrin, B. C., Dietrich, P., Volvert, M. L., Guillemot, F., Dragatsis, I.et al. (2010). Huntingtin is required for mitotic spindle orientation and mammalian neurogenesis. Neuron 67, 392-406. 10.1016/j.neuron.2010.06.027 [DOI] [PubMed] [Google Scholar]
- Grafton, S. T., Mazziotta, J. C., Pahl, J. J., St George-Hyslop, P., Haines, J. L., Gusella, J., Hoffman, J. M., Baxter, L. R. and Phelps, M. E. (1992). Serial changes of cerebral glucose metabolism and caudate size in persons at risk for Huntington's disease. Arch. Neurol. 49, 1161-1167. 10.1001/archneur.1992.00530350075022 [DOI] [PubMed] [Google Scholar]
- Guo, X., Disatnik, M. H., Monbureau, M., Shamloo, M., Mochly-Rosen, D. and Qi, X. (2013). Inhibition of mitochondrial fragmentation diminishes Huntington's disease-associated neurodegeneration. J. Clin. Invest. 123, 5371-5388. 10.1172/JCI70911 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Handsaker, R. E., Kashin, S., Reed, N. M., Tan, S., Lee, W. S., McDonald, T. M., Morris, K., Kamitaki, N., Mullally, C. D., Morakabati, N. R.et al. (2025). Long somatic DNA-repeat expansion drives neurodegeneration in Huntington's disease. Cell 188, 623-639.e19. 10.1016/j.cell.2024.11.038 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haremaki, T., Metzger, J. J., Rito, T., Ozair, M. Z., Etoc, F. and Brivanlou, A. H. (2019). Self-organizing neuruloids model developmental aspects of Huntington's disease in the ectodermal compartment. Nat. Biotechnol. 37, 1198-1208. 10.1038/s41587-019-0237-5 [DOI] [PubMed] [Google Scholar]
- HD iPSC Consortium (2012). Induced pluripotent stem cells from patients with Huntington's disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 11, 264-278. 10.1016/j.stem.2012.04.027 [DOI] [PMC free article] [PubMed] [Google Scholar]
- HD iPSC Consortium (2017). Developmental alterations in Huntington's disease neural cells and pharmacological rescue in cells and mice. Nat. Neurosci. 20, 648-660. 10.1038/nn.4532 [DOI] [PMC free article] [PubMed] [Google Scholar]
- HD iPSC Consortium (2020). Bioenergetic deficits in Huntington's disease iPSC-derived neural cells and rescue with glycolytic metabolites. Hum. Mol. Genet. 29, 1757-1771. 10.1093/hmg/ddy430 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hickman, R. A., Faust, P. L., Rosenblum, M. K., Marder, K., Mehler, M. F. and Vonsattel, J. P. (2021). Developmental malformations in Huntington disease: neuropathologic evidence of focal neuronal migration defects in a subset of adult brains. Acta Neuropathol. 141, 399-413. 10.1007/s00401-021-02269-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hickman, R. A., Faust, P. L., Marder, K., Yamamoto, A. and Vonsattel, J. P. (2022). The distribution and density of Huntingtin inclusions across the Huntington disease neocortex: regional correlations with Huntingtin repeat expansion independent of pathologic grade. Acta Neuropathol. Commun. 10, 55. 10.1186/s40478-022-01364-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Humbert, S. (2010). Is Huntington disease a developmental disorder? EMBO Rep. 11, 899. 10.1038/embor.2010.182 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iwata, R., Casimir, P. and Vanderhaeghen, P. (2020). Mitochondrial dynamics in postmitotic cells regulate neurogenesis. Science 369, 858-862. 10.1126/science.aba9760 [DOI] [PubMed] [Google Scholar]
- Iwata, R., Casimir, P., Erkol, E., Boubakar, L., Planque, M., Gallego López, I. M., Ditkowska, M., Gaspariunaite, V., Beckers, S., Remans, D.et al. (2023). Mitochondria metabolism sets the species-specific tempo of neuronal development. Science 379, eabn4705. 10.1126/science.abn4705 [DOI] [PubMed] [Google Scholar]
- Iyer, R. R. and Pluciennik, A. (2021). DNA mismatch repair and its role in Huntington's Disease. J. Huntingtons Dis. 10, 75-94. 10.3233/JHD-200438 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jonson, I., Ougland, R., Klungland, A. and Larsen, E. (2013). Oxidative stress causes DNA triplet expansion in Huntington's disease mouse embryonic stem cells. Stem. Cell Res. 11, 1264-1271. 10.1016/j.scr.2013.08.010 [DOI] [PubMed] [Google Scholar]
- Joshi, A. U., Minhas, P. S., Liddelow, S. A., Haileselassie, B., Andreasson, K. I., Dorn, G. W., II and Mochly-Rosen, D. (2019). Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat. Neurosci. 22, 1635-1648. 10.1038/s41593-019-0486-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kacher, R., Lejeune, F. X., Noël, S., Cazeneuve, C., Brice, A., Humbert, S. and Durr, A. (2021). Propensity for somatic expansion increases over the course of life in Huntington disease. eLife 10, e64674. 10.7554/eLife.64674 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaye, J., Reisine, T. and Finkbeiner, S. (2022). Huntington's disease iPSC models-using human patient cells to understand the pathology caused by expanded CAG repeats. Fac. Rev. 11, 16. 10.12703/r/11-16 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennedy, L. and Shelbourne, P. F. (2000). Dramatic mutation instability in HD mouse striatum: does polyglutamine load contribute to cell-specific vulnerability in Huntington's disease? Hum. Mol. Genet. 9, 2539-2544. 10.1093/hmg/9.17.2539 [DOI] [PubMed] [Google Scholar]
- Kovtun, I. V., Liu, Y., Bjoras, M., Klungland, A., Wilson, S. H. and McMurray, C. T. (2007). OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 447, 447-452. 10.1038/nature05778 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kubera, K. M., Schmitgen, M. M., Hirjak, D., Wolf, R. C. and Orth, M. (2019). Cortical neurodevelopment in pre-manifest Huntington's disease. Neuroimage. Clin. 23, 101913. 10.1016/j.nicl.2019.101913 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuemmerle, S., Gutekunst, C. A., Klein, A. M., Li, X. J., Li, S. H., Beal, M. F., Hersch, S. M. and Ferrante, R. J. (1999). Huntington aggregates may not predict neuronal death in Huntington's disease. Ann. Neurol. 46, 842-849. [DOI] [PubMed] [Google Scholar]
- Laundos, T. L., Li, S., Cheang, E., De Santis, R., Piccolo, F. M. and Brivanlou, A. H. (2023). Huntingtin CAG-expansion mutation results in a dominant negative effect. Front. Cell Dev. Biol. 11, 1252521. 10.3389/fcell.2023.1252521 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leavitt, B. R., Guttman, J. A., Hodgson, J. G., Kimel, G. H., Singaraja, R., Vogl, A. W. and Hayden, M. R. (2001). Wild-type huntingtin reduces the cellular toxicity of mutant huntingtin in vivo. Am. J. Hum. Genet. 68, 313-324. 10.1086/318207 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leavitt, B. R., van Raamsdonk, J. M., Shehadeh, J., Fernandes, H., Murphy, Z., Graham, R. K., Wellington, C. L., Raymond, L. A. and Hayden, M. R. (2006). Wild-type huntingtin protects neurons from excitotoxicity. J. Neurochem. 96, 1121-1129. 10.1111/j.1471-4159.2005.03605.x [DOI] [PubMed] [Google Scholar]
- Lebouc, M., Bonamy, L., Dhellemmes, T., Scharnholz, J., Richard, Q., Courtand, G., Brochard, A., Martins, F., Landry, M., Baufreton, J.et al. (2025). Developmental alterations of indirect-pathway medium spiny neurons in mouse models of Huntington's disease. Neurobiol. Dis. 208, 106874. 10.1016/j.nbd.2025.106874 [DOI] [PubMed] [Google Scholar]
- Lee, J. K., Mathews, K., Schlaggar, B., Perlmutter, J., Paulsen, J. S., Epping, E., Burmeister, L. and Nopoulos, P. (2012). Measures of growth in children at risk for Huntington disease. Neurology 79, 668-674. 10.1212/WNL.0b013e3182648b65 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lisowski, P., Lickfett, S., Rybak-Wolf, A., Menacho, C., Le, S., Pentimalli, T. M., Notopoulou, S., Dykstra, W., Oehler, D., López-Calcerrada, S.et al. (2024). Mutant huntingtin impairs neurodevelopment in human brain organoids through CHCHD2-mediated neurometabolic failure. Nat. Commun. 15, 7027. 10.1038/s41467-024-51216-w [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu, C., Fu, Z., Wu, S., Wang, X., Zhang, S., Chu, C., Hong, Y., Wu, W., Chen, S., Jiang, Y.et al. (2022). Mitochondrial HSF1 triggers mitochondrial dysfunction and neurodegeneration in Huntington's disease. EMBO Mol. Med. 14, e15851. 10.15252/emmm.202215851 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu, X., Wang, F., Fan, X., Chen, M., Xu, X., Xu, Q., Zhu, H., Xu, A., Pouladi, M. A. and Xu, X. (2024a). CHCHD2 up-regulation in Huntington disease mediates a compensatory protective response against oxidative stress. Cell Death Dis. 15, 126. 10.1038/s41419-024-06523-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu, Y., Chen, X., Ma, Y., Song, C., Ma, J., Chen, C., Su, J., Ma, L. and Saiyin, H. (2024b). Endogenous mutant Huntingtin alters the corticogenesis via lowering Golgi recruiting ARF1 in cortical organoid. Mol. Psychiatry 29, 3024-3039. 10.1038/s41380-024-02562-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sardo, L., Zuccato, V., Gaudenzi, C., Vitali, G., Ramos, B., Tartari, C., Myre, M., Walker, M. A., Pistocchi, J. A., Conti, A. (2012). An evolutionary recent neuroepithelial cell adhesion function of huntingtin implicates ADAM10-Ncadherin. Nat. Neurosci. 15, 713-721. 10.1038/nn.3080 [DOI] [PubMed] [Google Scholar]
- Lopes, C., Tang, Y., Anjo, S. I., Manadas, B., Onofre, I., de Almeida, L. P., Daley, G. Q., Schlaeger, T. M. and Rego, A. C. C. (2020). Mitochondrial and redox modifications in huntington disease induced pluripotent stem cells rescued by CRISPR/Cas9 CAGs targeting. Front. Cell Dev. Biol. 8, 576592. 10.3389/fcell.2020.576592 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Louçã, M., El Akrouti, D., Lemesle, A., Louessard, M., Dufour, N., Baroin, C., de la Fouchardière, A., Cotter, L., Jean-Jacques, H., Redeker, V.et al. (2024). Huntingtin lowering impairs the maturation and synchronized synaptic activity of human cortical neuronal networks derived from induced pluripotent stem cells. Neurobiol. Dis. 200, 106630. 10.1016/j.nbd.2024.106630 [DOI] [PubMed] [Google Scholar]
- Lu, X. H., Mattis, V. B., Wang, N., Al-Ramahi, I., van den Berg, N., Fratantoni, S. A., Waldvogel, H., Greiner, E., Osmand, A., Elzein, K.et al. (2014). Targeting ATM ameliorates mutant Huntingtin toxicity in cell and animal models of Huntington's disease. Sci. Transl. Med. 6, 268ra178. [DOI] [PubMed] [Google Scholar]
- Mangin, J. F., Rivière, D., Duchesnay, E., Cointepas, Y., Gaura, V., Verny, C., Damier, P., Krystkowiak, P., Bachoud-Lévi, A. C., Hantraye, P.et al. (2020). Neocortical morphometry in Huntington's disease: Indication of the coexistence of abnormal neurodevelopmental and neurodegenerative processes. Neuroimage. Clin. 26, 102211. 10.1016/j.nicl.2020.102211 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattis, V. B., Tom, C., Akimov, S., Saeedian, J., Østergaard, M. E., Southwell, A. L., Doty, C. N., Ornelas, L., Sahabian, A., Lenaeus, L.et al. (2015). HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity. Hum. Mol. Genet. 24, 3257-3271. 10.1093/hmg/ddv080 [DOI] [PMC free article] [PubMed] [Google Scholar]
- McColgan, P., Thobhani, A., Boak, L., Schobel, S. A., Nicotra, A., Palermo, G., Trundell, D., Zhou, J., Schlegel, V., Sanwald Ducray, P.et al. (2023). Tominersen in adults with manifest Huntington's disease. N. Engl. J. Med. 389, 2203-2205. 10.1056/NEJMc2300400 [DOI] [PubMed] [Google Scholar]
- McKinstry, S. U., Karadeniz, Y. B., Worthington, A. K., Hayrapetyan, V. Y., Ozlu, M. I., Serafin-Molina, K., Risher, W. C., Ustunkaya, T., Dragatsis, I., Zeitlin, S.et al. (2014). Huntingtin is required for normal excitatory synapse development in cortical and striatal circuits. J. Neurosci. 34, 9455-9472. 10.1523/JNEUROSCI.4699-13.2014 [DOI] [PMC free article] [PubMed] [Google Scholar]
- McQuade, L. R., Balachandran, A., Scott, H. A., Khaira, S., Baker, M. S. and Schmidt, U. (2014). Proteomics of Huntington's disease-affected human embryonic stem cells reveals an evolving pathology involving mitochondrial dysfunction and metabolic disturbances. J. Proteome Res. 13, 5648-5659. 10.1021/pr500649m [DOI] [PubMed] [Google Scholar]
- Mehler, M. F. and Gokhan, S. (2000). Mechanisms underlying neural cell death in neurodegenerative diseases: alterations of a developmentally-mediated cellular rheostat. Trends Neurosci. 23, 599-605. 10.1016/S0166-2236(00)01705-7 [DOI] [PubMed] [Google Scholar]
- Mehta, S. R., Tom, C. M., Wang, Y., Bresee, C., Rushton, D., Mathkar, P. P., Tang, J. and Mattis, V. B. (2018). Human Huntington's disease ipsc-derived cortical neurons display altered transcriptomics, morphology, and maturation. Cell Rep. 25, 1081-1096.e6. 10.1016/j.celrep.2018.09.076 [DOI] [PubMed] [Google Scholar]
- Molero, A. E., Arteaga-Bracho, E. E., Chen, C. H., Gulinello, M., Winchester, M. L., Pichamoorthy, N., Gokhan, S., Khodakhah, K. and Mehler, M. F. (2016). Selective expression of mutant huntingtin during development recapitulates characteristic features of Huntington's disease. Proc. Natl. Acad. Sci. USA 113, 5736-5741. 10.1073/pnas.1603871113 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molero, A. E., Gokhan, S., Gonzalez, S., Feig, J. L., Alexandre, L.C. and Mehler, M. F. (2009). Impairment of developmental stem cell-mediated striatal neurogenesis and pluripotency genes in a knock-in model of Huntington's disease. Proc. Natl. Acad. Sci. U S A. 106, 21900-21905. 10.1073/pnas.0912171106 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molina-Calavita, M., Barnat, M., Elias, S., Aparicio, E., Piel, M. and Humbert, S. (2014). Mutant huntingtin affects cortical progenitor cell division and development of the mouse neocortex. J. Neurosci. 34, 10034-10040. 10.1523/JNEUROSCI.0715-14.2014 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monk, R., Lee, K., Jones, K. S. and Connor, B. (2021). Directly reprogrammed Huntington's disease neural precursor cells generate striatal neurons exhibiting aggregates and impaired neuronal maturation. Stem Cells 39, 1410-1422. 10.1002/stem.3420 [DOI] [PubMed] [Google Scholar]
- Nance, M. A., Seltzer, W., Ashizawa, T., Bennett, R., McIntosh, N., Myers, R. H., Potter, N. T. and Shea, D. K. (1998). Laboratory guidelines for Huntington disease genetic testing. Am. J. Hum. Genet. 62, 1243-1247. 10.1086/301846 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nasir, J., Floresco, S. B., O'Kusky, J. R., Diewert, V. M., Richman, J. M., Zeisler, J., Borowski, A., Marth, J. D., Phillips, A. G. and Hayden, M. R. (1995). Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81, 811-823. 10.1016/0092-8674(95)90542-1 [DOI] [PubMed] [Google Scholar]
- Nekrasov, E. D. and Kiselev, S. L. (2018). Mitochondrial distribution violation and nuclear indentations in neurons differentiated from iPSCs of Huntington's disease patients. J. Stem Cells Regen. Med. 14, 80-85. 10.46582/jsrm.1402012 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nopoulos, P. C., Aylward, E. H., Ross, C. A., Mills, J. A., Langbehn, D. R., Johnson, H. J., Magnotta, V. A., Pierson, R. K., Beglinger, L. J., Nance, M. A.et al. (2011). Smaller intracranial volume in prodromal Huntington's disease: evidence for abnormal neurodevelopment. Brain 134, 137-142. 10.1093/brain/awq280 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogilvie, A. C., Nopoulos, P. C. and Schultz, J. L. (2021). Quantifying the onset of unintended weight loss in Huntington's disease: a retrospective analysis of enroll-HD. J. Huntingtons Dis. 10, 485-492. 10.3233/JHD-210488 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Onesto, M. M., Kim, J. I. and Pasca, S. P. (2024). Assembloid models of cell-cell interaction to study tissue and disease biology. Cell Stem Cell 31, 1563-1573. 10.1016/j.stem.2024.09.017 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfalzer, A. C., Watson, K. H., Ciriegio, A. E., Hale, L., Diehl, S., McDonell, K. E., Vnencak-Jones, C., Huitz, E., Snow, A., Roth, M. C.et al. (2023). Impairments to executive function in emerging adults with Huntington disease. J. Neurol. Neurosurg. Psychiatry 94, 130-135. 10.1136/jnnp-2022-329812 [DOI] [PubMed] [Google Scholar]
- Pressl, C., Mätlik, K., Kus, L., Darnell, P., Luo, J. D., Paul, M. R., Weiss, A. R., Liguore, W., Carroll, T. S., Davis, D. A.et al. (2024). Selective vulnerability of layer 5a corticostriatal neurons in Huntington's disease. Neuron 112, 924-941.e10. 10.1016/j.neuron.2023.12.009 [DOI] [PubMed] [Google Scholar]
- Reiner, A., Albin, R. L., Anderson, K. D., D'Amato, C. J., Penney, J. B. and Young, A. B. (1988). Differential loss of striatal projection neurons in Huntington disease. Proc. Natl. Acad. Sci. USA 85, 5733-5737. 10.1073/pnas.85.15.5733 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reiner, A., Dragatsis, I., Zeitlin, S. and Goldowitz, D. (2003). Wild-type huntingtin plays a role in brain development and neuronal survival. Mol. Neurobiol. 28, 259-276. 10.1385/MN:28:3:259 [DOI] [PubMed] [Google Scholar]
- Ring, K. L., An, M. C., Zhang, N., O'Brien, R. N., Ramos, E. M., Gao, F., Atwood, R., Bailus, B. J., Melov, S., Mooney, S. D.et al. (2015). Genomic analysis reveals disruption of striatal neuronal development and therapeutic targets in human huntington's disease neural stem cells. Stem Cell Rep. 5, 1023-1038. 10.1016/j.stemcr.2015.11.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross, C. A. and Tabrizi, S. J. (2011). Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 10, 83-98. 10.1016/S1474-4422(10)70245-3 [DOI] [PubMed] [Google Scholar]
- Ruan, Y., Hu, J., Che, Y., Liu, Y., Luo, Z., Cheng, J., Han, Q., He, H. and Zhou, Q. (2022). CHCHD2 and CHCHD10 regulate mitochondrial dynamics and integrated stress response. Cell Death Dis. 13, 156. 10.1038/s41419-022-04602-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubinsztein, D. C. and Carmichael, J. (2003). Huntington's disease: molecular basis of neurodegeneration. Expert Rev. Mol. Med. 5, 1-21. 10.1017/S1462399403006549 [DOI] [PubMed] [Google Scholar]
- Ruzo, A., Croft, G. F., Metzger, J. J., Galgoczi, S., Gerber, L. J., Pellegrini, C., Wang, H., Jr, Fenner, M., Tse, S., Marks, A.et al. (2018). Chromosomal instability during neurogenesis in Huntington's disease. Development 145, dev156844. 10.1242/dev.156844 [DOI] [PubMed] [Google Scholar]
- Sarappa, C., Salvatore, E., Filla, A., Cocozza, S., Russo, C. V., Saccà, F., Brunetti, A., De Michele, G. and Quarantelli, M. (2017). Functional MRI signal fluctuations highlight altered resting brain activity in Huntington's disease. Brain Imaging Behav. 11, 1459-1469. 10.1007/s11682-016-9630-6 [DOI] [PubMed] [Google Scholar]
- Saudou, F., Finkbeiner, S., Devys, D. and Greenberg, M. E. (1998). Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55-66. 10.1016/S0092-8674(00)81782-1 [DOI] [PubMed] [Google Scholar]
- Scahill, R. I., Farag, M., Murphy, M. J., Hobbs, N. Z., Leocadi, M., Langley, C., Knights, H., Ciosi, M., Fayer, K., Nakajima, M.et al. (2025). Somatic CAG repeat expansion in blood associates with biomarkers of neurodegeneration in Huntington's disease decades before clinical motor diagnosis. Nat. Med. 31, 807-818. 10.1038/s41591-024-03424-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scahill, R. I., Hobbs, N. Z., Say, M. J., Bechtel, N., Henley, S. M., Hyare, H., Langbehn, D. R., Jones, R., Leavitt, B. R., Roos, R. A.et al. (2013). Clinical impairment in premanifest and early Huntington's disease is associated with regionally specific atrophy. Hum. Brain Mapp. 34, 519-529. 10.1002/hbm.21449 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh, A. and Agrawal, N. (2022). Metabolism in Huntington's disease: a major contributor to pathology. Metab. Brain Dis. 37, 1757-1771. 10.1007/s11011-021-00844-y [DOI] [PubMed] [Google Scholar]
- Slow, E. J., Graham, R. K., Osmand, A. P., Devon, R. S., Lu, G., Deng, Y., Pearson, J., Vaid, K., Bissada, N., Wetzel, R.et al. (2005). Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proc. Natl. Acad. Sci. USA 102, 11402-11407. 10.1073/pnas.0503634102 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith-Geater, C., Hernandez, S. J., Lim, R. G., Adam, M., Wu, J., Stocksdale, J. T., Wassie, B. T., Gold, M. P., Wang, K. Q., Miramontes, R.et al. (2020). Aberrant development corrected in adult-onset huntington's disease ipsc-derived neuronal cultures via WNT signaling modulation. Stem Cell Rep. 14, 406-419. 10.1016/j.stemcr.2020.01.015 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song, W., Chen, J., Petrilli, A., Liot, G., Klinglmayr, E., Zhou, Y., Poquiz, P., Tjong, J., Pouladi, M. A., Hayden, M. R.et al. (2011). Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat. Med. 17, 377-382. 10.1038/nm.2313 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swami, M., Hendricks, A. E., Gillis, T., Massood, T., Mysore, J., Myers, R. H. and Wheeler, V. C. (2009). Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset. Hum. Mol. Genet. 18, 3039-3047. 10.1093/hmg/ddp242 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Świtońska, K., Szlachcic, W. J., Handschuh, L., Wojciechowski, P., Marczak, Ł., Stelmaszczuk, M., Figlerowicz, M. and Figiel, M. (2018). Identification of altered developmental pathways in human juvenile HD iPSC with 71Q and 109Q using transcriptome profiling. Front. Cell Neurosci. 12, 528. 10.3389/fncel.2018.00528 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szlachcic, W. J., Switonski, P. M., Krzyzosiak, W. J., Figlerowicz, M. and Figiel, M. (2015). Huntington disease iPSCs show early molecular changes in intracellular signaling, the expression of oxidative stress proteins and the p53 pathway. Dis. Model Mech. 8, 1047-1057. 10.1242/dmm.019406 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabrizi, S. J., Langbehn, D. R., Leavitt, B. R., Roos, R. A., Durr, A., Craufurd, D., Kennard, C., Hicks, S. L., Fox, N. C., Scahill, R. I.et al. (2009). Biological and clinical manifestations of Huntington's disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol. 8, 791-801. 10.1016/S1474-4422(09)70170-X [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tereshchenko, A., Magnotta, V., Epping, E., Mathews, K., Espe-Pfeifer, P., Martin, E., Dawson, J., Duan, W. and Nopoulos, P. (2019). Brain structure in juvenile-onset Huntington disease. Neurology 92, e1939-e1947. 10.1212/WNL.0000000000007355 [DOI] [PMC free article] [PubMed] [Google Scholar]
- The Huntington's Disease Collaborative Research Group (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's disease collaborative research group. Cell 72, 971-983. 10.1016/0092-8674(93)90585-E [DOI] [PubMed] [Google Scholar]
- Tong, Y., Ha, T. J., Liu, L., Nishimoto, A., Reiner, A. and Goldowitz, D. (2011). Spatial and temporal requirements for huntingtin (Htt) in neuronal migration and survival during brain development. J. Neurosci. 31, 14794-14799. 10.1523/JNEUROSCI.2774-11.2011 [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Burg, J. M. M., Gardiner, S. L., Ludolph, A. C., Landwehrmeyer, G. B., Roos, R. A. C. and Aziz, N. A. (2017). Body weight is a robust predictor of clinical progression in Huntington disease. Ann. Neurol. 82, 479-483. 10.1002/ana.25007 [DOI] [PubMed] [Google Scholar]
- van der Plas, E., Langbehn, D. R., Conrad, A. L., Koscik, T. R., Tereshchenko, A., Epping, E. A., Magnotta, V. A. and Nopoulos, P. C. (2019). Abnormal brain development in child and adolescent carriers of mutant huntingtin. Neurology 93, e1021-e1030. 10.1212/WNL.0000000000008066 [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Plas, E., Schultz, J. L. and Nopoulos, P. C. (2020). The neurodevelopmental hypothesis of Huntington's disease. J. Huntingtons Dis. 9, 217-229. 10.3233/JHD-200394 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vitet, H., Brandt, V. and Saudou, F. (2020). Traffic signaling: new functions of huntingtin and axonal transport in neurological disease. Curr. Opin. Neurobiol. 63, 122-130. 10.1016/j.conb.2020.04.001 [DOI] [PubMed] [Google Scholar]
- Walker, F. O. (2007). Huntington's disease. Lancet 369, 218-228. 10.1016/S0140-6736(07)60111-1 [DOI] [PubMed] [Google Scholar]
- Wang, N., Zhang, S., Langfelder, P., Ramanathan, L., Gao, F., Plascencia, M., Vaca, R., Gu, X., Deng, L., Dionisio, L. E.et al. (2025). Distinct mismatch-repair complex genes set neuronal CAG-repeat expansion rate to drive selective pathogenesis in HD mice. Cell 188, 1524-1544.e22. 10.1016/j.cell.2025.01.031 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiatr, K., Szlachcic, W. J., Trzeciak, M., Figlerowicz, M. and Figiel, M. (2018). Huntington disease as a neurodevelopmental disorder and early signs of the disease in stem cells. Mol. Neurobiol. 55, 3351-3371. 10.1007/s12035-017-0477-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu, S., Hong, Y., Chu, C., Gan, Y., Li, X., Tao, M., Wang, D., Hu, H., Zheng, Z., Zhu, Q.et al. (2024). Construction of human 3D striato-nigral assembloids to recapitulate medium spiny neuronal projection defects in Huntington's disease. Proc. Natl. Acad. Sci. USA 121, e2316176121. 10.1073/pnas.2316176121 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu, X., Tay, Y., Sim, B., Yoon, S. I., Huang, Y., Ooi, J., Utami, K. H., Ziaei, A., Ng, B., Radulescu, C.et al. (2017). Reversal of phenotypic abnormalities by CRISPR/Cas9-Mediated Gene correction in huntington disease patient-derived induced pluripotent stem cells. Stem Cell Rep. 8, 619-633. 10.1016/j.stemcr.2017.01.022 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto, A., Lucas, J. J. and Hen, R. (2000). Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 101, 57-66. 10.1016/S0092-8674(00)80623-6 [DOI] [PubMed] [Google Scholar]
- Zeitlin, S., Liu, J. P., Chapman, D. L., Papaioannou, V. E. and Efstratiadis, A. (1995). Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nat. Genet. 11, 155-163. 10.1038/ng1095-155 [DOI] [PubMed] [Google Scholar]
- Zhang, J., Ooi, J., Utami, K. H., Langley, S. R., Aning, O. A., Park, D. S., Renner, M., Ma, S., Cheok, C. F., Knoblich, J. A.et al. (2019). Expanded huntingtin CAG repeats disrupt the balance between neural progenitor expansion and differentiation in human cerebral organoids. bioRxiv 850586. 10.1101/850586 [DOI] [Google Scholar]
- Zhou, W., Ma, D. and Tan, E. K. (2020). Mitochondrial CHCHD2 and CHCHD10: roles in neurological diseases and therapeutic implications. Neuroscientist 26, 170-184. 10.1177/1073858419871214 [DOI] [PubMed] [Google Scholar]
- Zielonka, D., Piotrowska, I., Marcinkowski, J. T. and Mielcarek, M. (2014). Skeletal muscle pathology in Huntington's disease. Front. Physiol. 5, 380. 10.3389/fphys.2014.00380 [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.

