Abstract
Tree shrews (Tupaia belangeri) develop a bidiscoid endotheliochorial placenta. In addition, histiotrophe secreted by uterine glands is absorbed by the paraplacental trophoblast. Histiotrophe which is rich in iron is necessary for erythropoiesis in the young embryo. This report is part of a study of the accumulation and metabolism of iron in the endometrium of precisely dated pregnant Tupaia belangeri by application of electron spectroscopy and histochemistry. In the endometrium of tree shrews which had been pregnant at least once, iron-laden granules were present in macrophages and secreting cells of uterine glands. Iron accumulated in the endometrium shortly after parturition, when macrophages phagocytosed erythrocytes at small haematomas 0.2-0.5 mm in diameter. These haematomas arose during parturition after bleeding into the uterine stroma when the placental discs were detached. At 24 h after parturition the following structural consequences of the erythrolysosomal breakdown of phagocytosed erythrocytes could be observed: free cytosolic siderin granules, membrane-bound siderosomes, telolysosomes (some of which contained myelin figures or lipid droplets) and mixed telolysosomes (containing membranous stacks and siderin granules). During the lysosomal degradation of phagocytosed erythrocytes, iron was transferred from haemoglobin into a different macromolecular compound. Electron energy loss spectra detected from inside siderosomes indicated an iron-oxygen compound, and high-power bright field electron micrographs of siderosomes demonstrated the ultrastructural pattern characteristic of ferritin. At about d 12 of a new pregnancy, macrophages containing siderosomes closely approached the bases of secreting cells of endometrial glands. This strongly suggests that iron is transferred from the macrophages to the glandular cells. Within the glandular cells, iron-rich histiotrophe was synthesised and released into the glandular lumen. Within the uterine cavity this histiotrophe was absorbed by the omphalopleure. We suggest that among eutherians, postpartum erythrophagocytosis, the transfer of iron from macrophages to uterine glands, and the paraplacental uptake of iron, represent an ancestral mechanism of iron supply to the embryo.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguas A. P., Grande N. R., Carvalho E. Inflammatory macrophages in the dog contain high amounts of intravesicular ferritin and are associated with pouches of connective tissue fibers. Am J Anat. 1991 Jan;190(1):89–96. doi: 10.1002/aja.1001900108. [DOI] [PubMed] [Google Scholar]
- Baker E., Morgan E. H. Placental iron transfer in the cat. J Physiol. 1973 Aug;232(3):485–501. doi: 10.1113/jphysiol.1973.sp010282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burton G. J. Review article. Placental uptake of maternal erythrocytes: a comparative study. Placenta. 1982 Oct-Dec;3(4):407–434. doi: 10.1016/s0143-4004(82)80033-7. [DOI] [PubMed] [Google Scholar]
- Burton G. J., Samuel C. A., Steven D. H. Ultrastructural studies of the placenta of the ewe: phagocytosis of erythrocytes by the chorionic epithelium at the central depression of the cotyledon. Q J Exp Physiol Cogn Med Sci. 1976 Oct;61(4):275–286. doi: 10.1113/expphysiol.1976.sp002359. [DOI] [PubMed] [Google Scholar]
- Damjanov I. Lectin cytochemistry and histochemistry. Lab Invest. 1987 Jul;57(1):5–20. [PubMed] [Google Scholar]
- Dumartin B., Canivenc R. Placental iron transfer regulation in the haemophagous region of the badger placenta: ultrastructural localization of ferritin in trophoblast and endothelial cells. Anat Embryol (Berl) 1992;185(2):175–179. doi: 10.1007/BF00185919. [DOI] [PubMed] [Google Scholar]
- Edwards V. D., Simon G. T. Ultrastructure aspects of red cell destruction in the normal rat spleen. J Ultrastruct Res. 1970 Oct;33(1):187–201. doi: 10.1016/s0022-5320(70)90125-5. [DOI] [PubMed] [Google Scholar]
- Gulamhusein A. P., Beck F. Development and structure of the extra-embryonic membranes of the ferret. A light microscopic and ultrastructural study. J Anat. 1975 Nov;120(Pt 2):349–365. [PMC free article] [PubMed] [Google Scholar]
- Kaufmann P., Luckhardt M., Elger W. The structure of the tupaia placenta. II. Ultrastructure. Anat Embryol (Berl) 1985;171(2):211–221. doi: 10.1007/BF00341416. [DOI] [PubMed] [Google Scholar]
- King B. F. Localization of transferrin on the surface of the human placenta by electron microscopic immunocytochemistry. Anat Rec. 1976 Oct;186(2):151–159. doi: 10.1002/ar.1091860203. [DOI] [PubMed] [Google Scholar]
- Kuhn H. J., Schwaier A. Implantation, early placentation, and the chronology of embryogenesis in Tupaia belangeri. Z Anat Entwicklungsgesch. 1973 Dec 31;142(3):315–340. doi: 10.1007/BF00519135. [DOI] [PubMed] [Google Scholar]
- Larkin E. C., Weintraub L. R., Crosby W. H. Iron transport across rabbit allantoic placenta. Am J Physiol. 1970 Jan;218(1):7–11. doi: 10.1152/ajplegacy.1970.218.1.7. [DOI] [PubMed] [Google Scholar]
- Lawson D. M., Artymiuk P. J., Yewdall S. J., Smith J. M., Livingstone J. C., Treffry A., Luzzago A., Levi S., Arosio P., Cesareni G. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature. 1991 Feb 7;349(6309):541–544. doi: 10.1038/349541a0. [DOI] [PubMed] [Google Scholar]
- Leiser R. Development of the trophoblast in the early carnivore placenta of the cat. Bibl Anat. 1982;(22):93–107. [PubMed] [Google Scholar]
- Luckett W. P. Morphogenesis of the placenta and fetal membranes of the tree shrews (family Tupaiidae). Am J Anat. 1968 Nov;123(3):385–428. doi: 10.1002/aja.1001230302. [DOI] [PubMed] [Google Scholar]
- Luckhardt M., Kaufmann P., Elger W. The structure of the tupaia placenta. I. Histology and vascularisation. Anat Embryol (Berl) 1985;171(2):201–210. doi: 10.1007/BF00341415. [DOI] [PubMed] [Google Scholar]
- Malassiné A. Scanning and transmission electron-microscopic observations of the 'hemophagous organ' of the cat placenta. Bibl Anat. 1982;(22):108–116. [PubMed] [Google Scholar]
- McArdle H. J., Douglas A. J., Morgan E. H. Uptake of transferrin and iron by cultured rat placental cells. J Cell Physiol. 1985 Mar;122(3):405–409. doi: 10.1002/jcp.1041220310. [DOI] [PubMed] [Google Scholar]
- Munro H. N., Linder M. C. Ferritin: structure, biosynthesis, and role in iron metabolism. Physiol Rev. 1978 Apr;58(2):317–396. doi: 10.1152/physrev.1978.58.2.317. [DOI] [PubMed] [Google Scholar]
- Myagkaya G. L., De Bruijn W. C. Ferritin in chorionic villi of the sheep placenta. Bibl Anat. 1982;(22):117–122. [PubMed] [Google Scholar]
- Myagkaya G. L., Schornagel K., van Veen H., Everts V. Electron microscopic study of the localization of ferric iron in chorionic epithelium of the sheep placenta. Placenta. 1984 Nov-Dec;5(6):551–558. doi: 10.1016/s0143-4004(84)80009-0. [DOI] [PubMed] [Google Scholar]
- Myagkaya G., Daems W. T. Fusion of erythrolysosomes in epithelial cells of the sheep placenta. Cell Tissue Res. 1979;203(2):209–221. doi: 10.1007/BF00237235. [DOI] [PubMed] [Google Scholar]
- Myagkaya G., Schellens J. P. Final stages of erythrophagocytosis in the sheep placenta. Cell Tissue Res. 1981;214(3):501–518. doi: 10.1007/BF00233491. [DOI] [PubMed] [Google Scholar]
- Myagkaya G., Schellens J. P., Vreeling-Sindelárová H. Lysosomal breakdown of erythrocytes in the sheep placenta. An ultrastructural study. Cell Tissue Res. 1979 Mar 9;197(1):79–94. doi: 10.1007/BF00233555. [DOI] [PubMed] [Google Scholar]
- Myagkaya G., Vreeling-Sindelarova H. Erythrophagocytosis by cells of the trophoblastic epithelium in the sheep placenta in different stages of gestation. Acta Anat (Basel) 1976;95(2):234–248. doi: 10.1159/000144616. [DOI] [PubMed] [Google Scholar]
- Parmley R. T., Barton J. C., Conrad M. E. Ultrastructural localization of transferrin, transferrin receptor, and iron-binding sites on human placental and duodenal microvilli. Br J Haematol. 1985 May;60(1):81–89. doi: 10.1111/j.1365-2141.1985.tb07388.x. [DOI] [PubMed] [Google Scholar]
- Parmley R. T., Barton J. C., Conrad M. E. Ultrastructural, cytochemical, and radioautographic localization of placental iron. Am J Pathol. 1981 Oct;105(1):10–20. [PMC free article] [PubMed] [Google Scholar]
- Pictet R., Orci L., Forssmann W. G., Girardier L. An electron microscope study of the perfusion-fixed spleen. II. Nurse cells and erythrophagocytosis. Z Zellforsch Mikrosk Anat. 1969;96(3):400–417. doi: 10.1007/BF00335216. [DOI] [PubMed] [Google Scholar]
- Ringeling P. L., Cleton M. I., Kroos M. J., Sorber L. W., de Bruyn W. C., Harrison P. M., van Eijk H. G. Lysosomal and cytosolic ferritins. A biochemical and electron-spectroscopic study. Biol Met. 1989;2(2):114–121. doi: 10.1007/BF01129210. [DOI] [PubMed] [Google Scholar]
- Sasaki K. Three-dimensional analysis of erythrophagosomes in rat mesenteric lymph node macrophages. Am J Anat. 1990 Aug;188(4):373–380. doi: 10.1002/aja.1001880405. [DOI] [PubMed] [Google Scholar]
- Seal U. S., Sinha A. A., Doe R. P. Placental iron transfer: relationship to placental anatomy and phylogeny of the mammals. Am J Anat. 1972 Jun;134(2):263–269. doi: 10.1002/aja.1001340209. [DOI] [PubMed] [Google Scholar]
- Simon G. T., Burke J. S. Electron microscopy of the spleen. 3. Erythro-leukophagocytosis. Am J Pathol. 1970 Mar;58(3):451–470. [PMC free article] [PubMed] [Google Scholar]
- Sinha A. A., Erickson A. W. Ultrastructure of the placenta of Antarctic seals during the first third of pregnancy. Am J Anat. 1974 Oct;141(2):263–267. doi: 10.1002/aja.1001410208. [DOI] [PubMed] [Google Scholar]
- Torbit C. A., Jr, Abel J. H., Jr, Tietz W. J., Jr Iron transport by uterine macrophages during early pregnancy in the bitch: III. Electron micorscopy. Cytobiologie. 1973 Aug;7(3):349–360. [PubMed] [Google Scholar]
- Totović V., Gedigk P., Wang T. N., Pino G. Ultrastrukturelle Morphogenese lipid- und eisenhaltiger Pigmente in den Kupffer-Zellen der Ratte nach Erythrophagie. Virchows Arch B Cell Pathol Incl Mol Pathol. 1980;34(2):123–141. [PubMed] [Google Scholar]








