Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1994 Apr;184(Pt 2):251–260.

The ciliary ganglion of the monkey: a light and electron microscope study.

Y L Zhang 1, C K Tan 1, W C Wong 1
PMCID: PMC1259986  PMID: 8014118

Abstract

The results of light and electron microscope studies of the ciliary ganglion of 5 monkeys (Macaca fascicularis) are described. The ganglion, measuring about 2 mm in length, was consistently observed to be attached to the nerve supplying the inferior oblique muscle at its origin from the oculomotor nerve. A very fine branch was found to connect the nasociliary nerve to the ganglion. The number of neurons varied from 2824 to 3545 after applying Abercrombie's (1946) correction. The mean of the maximum diameter was 43.1 microns (S.D. = 8.0), that of the minimum diameter was 30.5 microns (S.D. = 5.4); the mean of the average diameters was 36.8 microns (S.D. = 5.5) and that of the soma ratios of the maximum to minimum diameters was 1.4 (S.D. = 0.3). The frequency distributions of the maximum diameter, the minimum diameter, the average diameter and the soma ratio were all unimodal. On light microscopy, the Nissl granules in the neurons were prominent and randomly distributed in the cytoplasm. Under the electron microscope, the rough endoplasmic reticulum was distributed either peripherally, perinuclearly or randomly in the cytoplasm of the neuron. Most of the dendrites were short protrusions from the cell body; occasionally such dendritic protrusions were electron dense. Most of the synapses encountered were axodendritic; a few were axosomatic. Synaptic complexes were frequently observed. The axon terminals usually contained a mixture of both round, measuring 30-50 nm in diameter, and flattened vesicles. Tilt analyses showed that the flattened vesicles which measured 20 nm by 50 nm were either discoid or cylindrical in shape. Large dense-cored vesicles measuring 80-100 nm, with core diameters of between 40 and 60 nm, were frequently present.

Full text

PDF
251

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ciofi Luzzatto A., De Stefano M. E., Guidolin D., Paggi P., Toschi G. Quantitative study of neuronal degeneration induced by Ricinus toxin and crush of postganglionic nerves in the ciliary ganglion of quail. Neuroscience. 1991;42(3):893–900. doi: 10.1016/0306-4522(91)90052-p. [DOI] [PubMed] [Google Scholar]
  2. Colonnier M. Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res. 1968 Jul;9(2):268–287. doi: 10.1016/0006-8993(68)90234-5. [DOI] [PubMed] [Google Scholar]
  3. DE LORENZO A. J. The fine structure of synapses in the ciliary ganglion of the chick. J Biophys Biochem Cytol. 1960 Feb;7:31–36. doi: 10.1083/jcb.7.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Lorenzo A. J. Electron microscopy: tight junctions in synapses of the chick ciliary ganglion. Science. 1966 Apr 1;152(3718):76–78. doi: 10.1126/science.152.3718.76. [DOI] [PubMed] [Google Scholar]
  5. Dennison M. E. Electron stereoscopy as a means of classifying synaptic vesicles. J Cell Sci. 1971 Mar;8(2):525–539. doi: 10.1242/jcs.8.2.525. [DOI] [PubMed] [Google Scholar]
  6. Ehinger B., Falck B. Uptake of some catecholamines and their precursors into neurons of the rat ciliary ganglion. Acta Physiol Scand. 1970 Jan;78(1):132–141. doi: 10.1111/j.1748-1716.1970.tb04648.x. [DOI] [PubMed] [Google Scholar]
  7. Erichsen J. T., Karten H. J., Eldred W. D., Brecha N. C. Localization of substance P-like and enkephalin-like immunoreactivity within preganglionic terminals of the avian ciliary ganglion: light and electron microscopy. J Neurosci. 1982 Jul;2(7):994–1003. doi: 10.1523/JNEUROSCI.02-07-00994.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fiori M. G. Intranuclear inclusions in Schwann cells of aged fowl ciliary ganglia. J Anat. 1987 Oct;154:201–214. [PMC free article] [PubMed] [Google Scholar]
  9. GRAY E. G. A morphological basis for pre-synaptic inhibition? Nature. 1962 Jan 6;193:82–83. doi: 10.1038/193082a0. [DOI] [PubMed] [Google Scholar]
  10. GRIMES P., VON SALLMANN L. Comparative anatomy of the ciliary nerves. Arch Ophthalmol. 1960 Jul;64:81–91. doi: 10.1001/archopht.1960.01840010083007. [DOI] [PubMed] [Google Scholar]
  11. Hess A. Developmental changes in the structure of the synapse on the myelinated cell bodies of the chicken ciliary ganglion. J Cell Biol. 1965 Jun;25(3 Suppl):1–19. doi: 10.1083/jcb.25.3.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huikuri K. Electron microscopic observations on the granular vesicles in the ciliary ganglion of the rat. Experientia. 1969 Oct 15;25(10):1067–1068. doi: 10.1007/BF01901434. [DOI] [PubMed] [Google Scholar]
  13. Jackson P. C. Innervation of the iris by individual parasympathetic axons in the adult mouse. J Physiol. 1986 Sep;378:485–495. doi: 10.1113/jphysiol.1986.sp016231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnson D. A., Purves D. Post-natal reduction of neural unit size in the rabbit ciliary ganglion. J Physiol. 1981 Sep;318:143–159. doi: 10.1113/jphysiol.1981.sp013855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kuchiiwa S., Kuchiiwa T., Suzuki T. Comparative anatomy of the accessory ciliary ganglion in mammals. Anat Embryol (Berl) 1989;180(2):199–205. doi: 10.1007/BF00309772. [DOI] [PubMed] [Google Scholar]
  16. LELE P. P., GRIMES P. The role of neural mechanisms in the regulation of intraocular pressure in the cat. Exp Neurol. 1960 Jun;2:199–220. doi: 10.1016/0014-4886(60)90009-1. [DOI] [PubMed] [Google Scholar]
  17. Landmesser L., Pilar G. Fate of ganglionic synapses and ganglion cell axons during normal and induced cell death. J Cell Biol. 1976 Feb;68(2):357–374. doi: 10.1083/jcb.68.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Landmesser L., Pilar G. Synapse formation during embryogenesis on ganglion cells lacking a periphery. J Physiol. 1974 Sep;241(3):715–736. doi: 10.1113/jphysiol.1974.sp010680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Landmesser L., Pilar G. Synaptic transmission and cell death during normal ganglionic development. J Physiol. 1974 Sep;241(3):737–749. doi: 10.1113/jphysiol.1974.sp010681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Landmesser L., Pilar G. The onset and development of transmission in the chick ciliary ganglion. J Physiol. 1972 May;222(3):691–713. doi: 10.1113/jphysiol.1972.sp009822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ling E. A., Wong W. C. An electron microscopic study of the nodose (inferior vagal) ganglion cells in the monkey. J Neurocytol. 1988 Dec;17(6):845–857. doi: 10.1007/BF01216711. [DOI] [PubMed] [Google Scholar]
  22. Marwitt R., Pilar G., Weakly J. N. Characterization of two ganglion cell populations in avian ciliary ganglia. Brain Res. 1971 Jan 22;25(2):317–334. doi: 10.1016/0006-8993(71)90441-0. [DOI] [PubMed] [Google Scholar]
  23. Nemecek S. Principles of synaptic ultrastructure in the central nervous system. Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove. 1972;15(3):221–361. [PubMed] [Google Scholar]
  24. Pearson J., Pytel B. Quantitative studies of ciliary and sphenopalatine ganglia in familial dysautonomia. J Neurol Sci. 1978 Nov;39(1):123–130. doi: 10.1016/0022-510x(78)90193-4. [DOI] [PubMed] [Google Scholar]
  25. Perez G. M., Keyser R. B. Cell body counts in human ciliary ganglia. Invest Ophthalmol Vis Sci. 1986 Sep;27(9):1428–1431. [PubMed] [Google Scholar]
  26. Pilar G., Landmesser L., Burstein L. Competition for survival among developing ciliary ganglion cells. J Neurophysiol. 1980 Jan;43(1):233–254. doi: 10.1152/jn.1980.43.1.233. [DOI] [PubMed] [Google Scholar]
  27. Takahashi K., Hama K. Some observations on the fine structure of nerve cell bodies and their satellite cells in the ciliary ganglion of the chick. Z Zellforsch Mikrosk Anat. 1965 Sep 17;67(6):835–843. doi: 10.1007/BF00339304. [DOI] [PubMed] [Google Scholar]
  28. Takahashi K., Hama K. Some observations on the fine structure of the synaptic area in the ciliary ganglion of the chick. Z Zellforsch Mikrosk Anat. 1965 Jul 15;67(2):174–184. doi: 10.1007/BF00344467. [DOI] [PubMed] [Google Scholar]
  29. Tobari I. [Electron microscopic study of ciliary ganglion. I. Fine structure of the ciliary ganglion cell in cat]. Nippon Ganka Gakkai Zasshi. 1971 Jan 20;75:719–727. [PubMed] [Google Scholar]
  30. Tobari I. [Electron microscopic study of ciliary ganglion. II. Fine structure of nerve endings in ciliary ganglion of adult cat]. Nippon Ganka Gakkai Zasshi. 1971 Jan 20;75:739–747. [PubMed] [Google Scholar]
  31. Toyoshima K., Kawana E., Sakai H. On the neuronal origin of the afferents to the ciliary ganglion in cat. Brain Res. 1980 Mar 3;185(1):67–76. doi: 10.1016/0006-8993(80)90671-x. [DOI] [PubMed] [Google Scholar]
  32. Uchizono K. Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature. 1965 Aug 7;207(997):642–643. doi: 10.1038/207642a0. [DOI] [PubMed] [Google Scholar]
  33. WARWICK R. The ocular parasympathetic nerve supply and its mesencephalic sources. J Anat. 1954 Jan;88(1):71–93. [PMC free article] [PubMed] [Google Scholar]
  34. Watanabe H. The fine structure of the ciliary ganglion of the guinea pig. Arch Histol Jpn. 1972 May;34(3):261–276. doi: 10.1679/aohc1950.34.261. [DOI] [PubMed] [Google Scholar]
  35. Whitteridge D. The transmission of impulses through the ciliary ganglion. J Physiol. 1937 Feb 19;89(1):99–111. doi: 10.1113/jphysiol.1937.sp003466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wigston D. J. Maintenance of cholinergic neurones and synapses in the ciliary ganglion of aged rats. J Physiol. 1983 Nov;344:223–231. doi: 10.1113/jphysiol.1983.sp014935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yoshida M. Uber die Ultrastruktur der Nervenzellen des Ganglion ciliare beim Afen (Macacus irus F. Cuvier. Kobe J Med Sci. 1971 Jun;17(2):65–73. [PubMed] [Google Scholar]
  38. Zhang Y. L., Tan C. K., Wong W. C. The ciliary ganglion of the cat: a light and electron microscopic study. Anat Embryol (Berl) 1993 Jun;187(6):591–599. doi: 10.1007/BF00214438. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES